Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Neurosci ; 43(11): 1871-1887, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36823038

RESUMEN

Corticospinal neurons (CSN) are centrally required for skilled voluntary movement, which necessitates that they establish precise subcerebral connectivity with the brainstem and spinal cord. However, molecular controls regulating specificity of this projection targeting remain largely unknown. We previously identified that developing CSN subpopulations exhibit striking axon targeting specificity in the spinal white matter. These CSN subpopulations with segmentally distinct spinal projections are also molecularly distinct; a subset of differentially expressed genes between these distinct CSN subpopulations regulate differential axon projection targeting. Rostrolateral CSN extend axons exclusively to bulbar-cervical segments (CSNBC-lat), while caudomedial CSN (CSNmedial) are more heterogeneous, with distinct, intermingled subpopulations extending axons to either bulbar-cervical or thoraco-lumbar segments. Here, we report, in male and female mice, that Cerebellin 1 (Cbln1) is expressed specifically by CSN in medial, but not lateral, sensorimotor cortex. Cbln1 shows highly dynamic temporal expression, with Cbln1 levels in CSN highest during the period of peak axon extension toward thoraco-lumbar segments. Using gain-of-function experiments, we identify that Cbln1 is sufficient to direct thoraco-lumbar axon extension by CSN. Misexpression of Cbln1 in CSNBC-lat either by in utero electroporation, or by postmitotic AAV-mediated gene delivery, redirects these axons past their normal bulbar-cervical targets toward thoracic segments. Further, Cbln1 overexpression in postmitotic CSNBC-lat increases the number of CSNmedial axons that extend past cervical segments into the thoracic cord. Collectively, these results identify that Cbln1 functions as a potent molecular control over thoraco-lumbar CSN axon extension, part of an integrated network of controls over segmentally-specific CSN axon projection targeting.SIGNIFICANCE STATEMENT Corticospinal neurons (CSN) exhibit remarkable diversity and precision of axonal projections to targets in the brainstem and distinct spinal segments; the molecular basis for this targeting diversity is largely unknown. CSN subpopulations projecting to distinct targets are also molecularly distinguishable. Distinct subpopulations degenerate in specific motor neuron diseases, further suggesting that intrinsic molecular differences might underlie differential vulnerability to disease. Here, we identify a novel molecular control, Cbln1, expressed by CSN extending axons to thoraco-lumbar spinal segments. Cbln1 is sufficient, but not required, for CSN axon extension toward distal spinal segments, and Cbln1 expression is controlled by recently identified, CSN-intrinsic regulators of axon extension. Our results identify that Cbln1, together with other regulators, coordinates segmentally precise CSN axon targeting.


Asunto(s)
Axones , Médula Espinal , Femenino , Masculino , Animales , Ratones , Axones/fisiología , Médula Espinal/fisiología , Neuronas/fisiología , Neuritas , Proteínas del Tejido Nervioso/metabolismo , Precursores de Proteínas/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(46): 29113-29122, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33139574

RESUMEN

The corticospinal tract is unique to mammals and the corpus callosum is unique to placental mammals (eutherians). The emergence of these structures is thought to underpin the evolutionary acquisition of complex motor and cognitive skills. Corticospinal motor neurons (CSMN) and callosal projection neurons (CPN) are the archetypal projection neurons of the corticospinal tract and corpus callosum, respectively. Although a number of conserved transcriptional regulators of CSMN and CPN development have been identified in vertebrates, none are unique to mammals and most are coexpressed across multiple projection neuron subtypes. Here, we discover 17 CSMN-enriched microRNAs (miRNAs), 15 of which map to a single genomic cluster that is exclusive to eutherians. One of these, miR-409-3p, promotes CSMN subtype identity in part via repression of LMO4, a key transcriptional regulator of CPN development. In vivo, miR-409-3p is sufficient to convert deep-layer CPN into CSMN. This is a demonstration of an evolutionarily acquired miRNA in eutherians that refines cortical projection neuron subtype development. Our findings implicate miRNAs in the eutherians' increase in neuronal subtype and projection diversity, the anatomic underpinnings of their complex behavior.


Asunto(s)
Evolución Biológica , Corteza Cerebral/fisiología , Mamíferos/genética , MicroARNs/genética , MicroARNs/fisiología , Animales , Cuerpo Calloso/fisiología , Euterios/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Corteza Motora/patología , Neuronas Motoras , Tractos Piramidales/patología
3.
J Neurosci ; 32(50): 17935-47, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23238710

RESUMEN

Astrogliosis following spinal cord injury (SCI) involves an early hypertrophic response that serves to repair damaged blood-brain barrier and a subsequent hyperplastic response that results in a dense scar that impedes axon regeneration. The mechanisms regulating these two phases of astrogliosis are beginning to be elucidated. In this study, we found that microRNA-21 (miR-21) increases in a time-dependent manner following SCI in mouse. Astrocytes adjacent to the lesion area express high levels of miR-21 whereas astrocytes in uninjured spinal cord express low levels of miR-21. To study the role of miR-21 in astrocytes after SCI, transgenic mice were generated that conditionally overexpress either the primary miR-21 transcript in astrocytes or a miRNA sponge designed to inhibit miR-21 function. Overexpression of miR-21 in astrocytes attenuated the hypertrophic response to SCI. Conversely, expression of the miR-21 sponge augmented the hypertrophic phenotype, even in chronic stages of SCI recovery when astrocytes have normally become smaller in size with fine processes. Inhibition of miR-21 function in astrocytes also resulted in increased axon density within the lesion site. These findings demonstrate a novel role for miR-21 in regulating astrocytic hypertrophy and glial scar progression after SCI, and suggest miR-21 as a potential therapeutic target for manipulating gliosis and enhancing functional outcome.


Asunto(s)
Astrocitos/metabolismo , MicroARNs/metabolismo , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Animales , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Transgénicos , MicroARNs/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Traumatismos de la Médula Espinal/patología
4.
Cell Rep ; 42(3): 112182, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36934325

RESUMEN

How CNS circuits sculpt their axonal arbors into spatially and functionally organized domains is not well understood. Segmental specificity of corticospinal connectivity is an exemplar for such regional specificity of many axon projections. Corticospinal neurons (CSN) innervate spinal and brainstem targets with segmental precision, controlling voluntary movement. Multiple molecularly distinct CSN subpopulations innervate the cervical cord for evolutionarily enhanced precision of forelimb movement. Evolutionarily newer CSNBC-lat exclusively innervate bulbar-cervical targets, while CSNmedial are heterogeneous; distinct subpopulations extend axons to either bulbar-cervical or thoraco-lumbar segments. We identify that Lumican controls balance of cervical innervation between CSNBC-lat and CSNmedial axons during development, which is maintained into maturity. Lumican, an extracellular proteoglycan expressed by CSNBC-lat, non-cell-autonomously suppresses cervical collateralization by multiple CSNmedial subpopulations. This inter-axonal molecular crosstalk between CSN subpopulations controls murine corticospinal circuitry refinement and forelimb dexterity. Such crosstalk is generalizable beyond the corticospinal system for evolutionary incorporation of new neuron populations into preexisting circuitry.


Asunto(s)
Axones , Médula Espinal , Animales , Ratones , Médula Espinal/fisiología , Lumican , Axones/fisiología , Neuronas/fisiología , Movimiento , Tractos Piramidales
6.
J Neurosci ; 30(5): 1839-55, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-20130193

RESUMEN

Astrogliosis following spinal cord injury (SCI) involves an early hypertrophic response that is beneficial and a subsequent formation of a dense scar. We investigated the role of bone morphogenetic protein (BMP) signaling in gliosis after SCI and find that BMPR1a and BMPR1b signaling exerts opposing effects on hypertrophy. Conditional ablation of BMPR1a from glial fibrillary acidic protein (GFAP)-expressing cells leads to defective astrocytic hypertrophy, increased infiltration by inflammatory cells, and reduced axon density. BMPR1b-null mice conversely develop "hyperactive" reactive astrocytes and consequently have smaller lesion volumes. The effects of ablation of either receptor are reversed in the double knock-out animals. These findings indicate that BMPR1a and BMPR1b exert directly opposing effects on the initial reactive astrocytic hypertrophy. Also, BMPR1b knock-out mice have an attenuated glial scar in the chronic stages following injury, suggesting that it has a greater role in glial scar progression. To elucidate the differing roles of the two receptors in astrocytes, we examined the effects of ablation of either receptor in serum-derived astrocytes in vitro. We find that the two receptors exert opposing effects on the posttranscriptional regulation of astrocytic microRNA-21. Further, overexpression of microRNA-21 in wild-type serum-derived astrocytes causes a dramatic reduction in cell size accompanied by reduction in GFAP levels. Hence, regulation of microRNA-21 by BMP signaling provides a novel mechanism for regulation of astrocytic size. Targeting specific BMPR subunits for therapeutic purposes may thus provide an approach for manipulating gliosis and enhancing functional outcomes after SCI.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Gliosis/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Astrocitos/metabolismo , Axones/ultraestructura , Células Cultivadas , Femenino , Gliosis/patología , Hiperplasia/patología , Hiperplasia/fisiopatología , Ratones , Ratones Noqueados , Ratones Transgénicos , MicroARNs/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteínas Smad/metabolismo , Traumatismos de la Médula Espinal/patología , Regulación hacia Arriba
7.
J Neuroinflammation ; 8: 16, 2011 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-21324162

RESUMEN

BACKGROUND: Stromal cell-derived factor-1 (SDF1) and its major signaling receptor, CXCR4, were initially described in the immune system; however, they are also expressed in the nervous system, including the spinal cord. After spinal cord injury, the blood brain barrier is compromised, opening the way for chemokine signaling between these two systems. These experiments clarified prior contradictory findings on normal expression of SDF1 and CXCR4 as well as examined the resulting spinal cord responses resulting from this signaling. METHODS: These experiments examined the expression and function of SDF1 and CXCR4 in the normal and injured adult mouse spinal cord primarily using CXCR4-EGFP and SDF1-EGFP transgenic reporter mice. RESULTS: In the uninjured spinal cord, SDF1 was expressed in the dorsal corticospinal tract (dCST) as well as the meninges, whereas CXCR4 was found only in ependymal cells surrounding the central canal. After spinal cord injury (SCI), the pattern of SDF1 expression did not change rostral to the lesion but it disappeared from the degenerating dCST caudally. By contrast, CXCR4 expression changed dramatically after SCI. In addition to the CXCR4+ cells in the ependymal layer, numerous CXCR4+ cells appeared in the peripheral white matter and in the dorsal white matter localized between the dorsal corticospinal tract and the gray matter rostral to the lesion site. The non-ependymal CXCR4+ cells were found to be NG2+ and CD11b+ macrophages that presumably infiltrated through the broken blood-brain barrier. One population of macrophages appeared to be migrating towards the dCST that contains SDF1 rostral to the injury but not towards the caudal dCST in which SDF1 is no longer present. A second population of the CXCR4+ macrophages was present near the SDF1-expressing meningeal cells. CONCLUSIONS: These observations suggest that attraction of CXCR4+ macrophages is part of a programmed response to injury and that modulation of the SDF1 signaling system may be important for regulating the inflammatory response after SCI.


Asunto(s)
Movimiento Celular/fisiología , Quimiocina CXCL12/metabolismo , Tractos Piramidales/metabolismo , Receptores CXCR4/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Quimiocina CXCL12/genética , Ratones , Ratones Transgénicos , Receptores CXCR4/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Traumatismos de la Médula Espinal/patología
8.
Cell Rep ; 37(3): 109842, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686337

RESUMEN

The cerebral cortex executes highly skilled movement, necessitating that it connects accurately with specific brainstem and spinal motor circuitry. Corticospinal neurons (CSN) must correctly target specific spinal segments, but the basis for this targeting remains unknown. In the accompanying report, we show that segmentally distinct CSN subpopulations are molecularly distinct from early development, identifying candidate molecular controls over segmentally specific axon targeting. Here, we functionally investigate two of these candidate molecular controls, Crim1 and Kelch-like 14 (Klhl14), identifying their critical roles in directing CSN axons to appropriate spinal segmental levels in the white matter prior to axon collateralization. Crim1 and Klhl14 are specifically expressed by distinct CSN subpopulations and regulate their differental white matter projection targeting-Crim1 directs thoracolumbar axon extension, while Klhl14 limits axon extension to bulbar-cervical segments. These molecular regulators of descending spinal projections constitute the first stages of a dual-directional set of complementary controls over CSN diversity for segmentally and functionally distinct circuitry.


Asunto(s)
Axones/metabolismo , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proyección Neuronal , Tractos Piramidales/metabolismo , Factores de Edad , Animales , Receptores de Proteínas Morfogenéticas Óseas/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Tractos Piramidales/crecimiento & desarrollo
9.
Cell Rep ; 37(3): 109843, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686320

RESUMEN

For precise motor control, distinct subpopulations of corticospinal neurons (CSN) must extend axons to distinct spinal segments, from proximal targets in the brainstem and cervical cord to distal targets in thoracic and lumbar spinal segments. We find that developing CSN subpopulations exhibit striking axon targeting specificity in spinal white matter, which establishes the foundation for durable specificity of adult corticospinal circuitry. Employing developmental retrograde and anterograde labeling, and their distinct neocortical locations, we purified developing CSN subpopulations using fluorescence-activated cell sorting to identify genes differentially expressed between bulbar-cervical and thoracolumbar-projecting CSN subpopulations at critical developmental times. These segmentally distinct CSN subpopulations are molecularly distinct from the earliest stages of axon extension, enabling prospective identification even before eventual axon targeting decisions are evident in the spinal cord. This molecular delineation extends beyond simple spatial separation of these subpopulations in the cortex. Together, these results identify candidate molecular controls over segmentally specific corticospinal axon projection targeting.


Asunto(s)
Axones/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proyección Neuronal , Tractos Piramidales/metabolismo , Corteza Sensoriomotora/metabolismo , Sustancia Blanca/metabolismo , Factores de Edad , Animales , Receptores de Proteínas Morfogenéticas Óseas/genética , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Separación Celular , Femenino , Citometría de Flujo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Trazados de Vías Neuroanatómicas , Tractos Piramidales/crecimiento & desarrollo , Corteza Sensoriomotora/crecimiento & desarrollo , Transcripción Genética , Sustancia Blanca/crecimiento & desarrollo
10.
J Neurosci Res ; 88(14): 3161-70, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20818775

RESUMEN

Injection into the injured spinal cord of peptide amphiphile (PA) molecules that self-assemble and display the laminin epitope IKVAV at high density improved functional recovery after spinal cord injury (SCI) in two different species, rat and mouse, and in two different injury models, contusion and compression. The improvement required the IKVAV epitope and was not observed with the injection of an amphiphile displaying a nonbioactive sequence. To explore the mechanisms underlying these improvements, the number of serotonergic fibers in the lesioned spinal cord was compared in animals receiving the IKVAV-PA, a nonbioactive PA (PA control), or sham injection. Serotonergic fibers were distributed equally in all three groups rostral to the injury but showed a significantly higher density caudal to the injury site in the IKVAV PA-injected group. Furthermore, this difference was not present in the subacute phase following injury but appeared in the chronically injured cord. The IKVAV PA-injected groups also trended higher both in the total number neurons adjacent to the lesion and in the number of long propriospinal tract connections from the thoracic to the lumbar cord. IKVAV PA injection did not alter myelin thickness, total axon number caudal to the lesion, axon size distribution, or total axon area. Serotonin can promote stepping even in complete transection models, so the improved function produced by the IKVAV PA treatment may reflect the increased serotonergic innervation caudal to the lesion in addition to the previously demonstrated regeneration of motor and sensory axons through the lesion.


Asunto(s)
Fibras Nerviosas/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Serotonina/fisiología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Tensoactivos/farmacología , Animales , Recuento de Células , Modelos Animales de Enfermedad , Femenino , Laminina/administración & dosificación , Laminina/fisiología , Ratones , Ratones de la Cepa 129 , Nanofibras , Fibras Nerviosas/fisiología , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Fragmentos de Péptidos/administración & dosificación , Péptidos/administración & dosificación , Ratas , Ratas Long-Evans , Traumatismos de la Médula Espinal/metabolismo
11.
J Neurosci ; 28(14): 3814-23, 2008 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-18385339

RESUMEN

Peptide amphiphile (PA) molecules that self-assemble in vivo into supramolecular nanofibers were used as a therapy in a mouse model of spinal cord injury (SCI). Because self-assembly of these molecules is triggered by the ionic strength of the in vivo environment, nanoscale structures can be created within the extracellular spaces of the spinal cord by simply injecting a liquid. The molecules are designed to form cylindrical nanofibers that display to cells in the spinal cord the laminin epitope IKVAV at nearly van der Waals density. IKVAV PA nanofibers are known to inhibit glial differentiation of cultured neural stem cells and to promote neurite outgrowth from cultured neurons. In this work, in vivo treatment with the PA after SCI reduced astrogliosis, reduced cell death, and increased the number of oligodendroglia at the site of injury. Furthermore, the nanofibers promoted regeneration of both descending motor fibers and ascending sensory fibers through the lesion site. Treatment with the PA also resulted in significant behavioral improvement. These observations demonstrate that it is possible to inhibit glial scar formation and to facilitate regeneration after SCI using bioactive three-dimensional nanostructures displaying high densities of neuroactive epitopes on their surfaces.


Asunto(s)
Axones/efectos de los fármacos , Laminina/uso terapéutico , Neuroglía/efectos de los fármacos , Fragmentos de Péptidos/uso terapéutico , Traumatismos de la Médula Espinal , Análisis de Varianza , Animales , Apoptosis/efectos de los fármacos , Axones/fisiología , Caspasa 3/metabolismo , Cicatriz/tratamiento farmacológico , Diagnóstico por Imagen/métodos , Modelos Animales de Enfermedad , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/tratamiento farmacológico , Laminina/metabolismo , Ratones , Neuronas Motoras/patología , Regeneración Nerviosa/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Factores de Tiempo
12.
Neurobiol Aging ; 36(5): 2006.e1-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25801576

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of motor neurons resulting in progressive paralysis. Gene expression studies of ALS only rarely identify the same gene pathways as gene association studies. We hypothesized that analyzing tissues by matching on degree of disease severity would identify different patterns of gene expression from a traditional case-control comparison. We analyzed gene expression changes in 4 postmortem central nervous system regions, stratified by severity of motor neuron loss. An overall comparison of cases (n = 6) and controls (n = 3) identified known ALS gene, SOX5, as showing differential expression (log2 fold change = 0.09, p = 5.5 × 10(-5)). Analyses stratified by disease severity identified expression changes in C9orf72 (p = 2.77 × 10(-3)), MATR3 (p = 3.46 × 10(-3)), and VEGFA (p = 8.21 × 10(-4)), all implicated in ALS through genetic studies, and changes in other genes in pathways involving RNA processing and immune response. These findings suggest that analysis of gene expression stratified by disease severity can identify major ALS genes and may be more efficient than traditional case-control comparison.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Expresión Génica , Estudios de Asociación Genética , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/inmunología , Proteína C9orf72 , Estudios de Casos y Controles , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Femenino , Humanos , Inmunidad/genética , Masculino , Persona de Mediana Edad , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas/genética , Proteínas/metabolismo , Procesamiento Postranscripcional del ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Índice de Severidad de la Enfermedad , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Brain Res ; 996(2): 213-26, 2004 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-14697499

RESUMEN

The subventricular zone (SVZ) generates the largest number of migratory cells in the adult brain. SVZ neuroblasts migrate to the olfactory bulbs (OB) in the adult, whereas during development, SVZ cells migrate into many adjacent nuclei. Previously, we showed that cerebral cortex injury in the adult causes molecular and cellular changes which may recapitulate the developmental migratory directions. Consistent with this, growth factors, as well as models of illness or injury can cause adult SVZ cells to migrate into non-olfactory bulb nuclei. Here, we tested the hypothesis that cerebral cortex injury in the adult mouse induces changes in migration, by labeling adult SVZ cells with a retroviral vector and examining the distribution of cells 4 days and 3 weeks later. Four days after cortical lesions, disproportionately fewer retrovirally-labeled cells had migrated to the olfactory bulb in lesioned mice than in controls. Conversely, the number of cells found in non-olfactory bulb regions (primarily the area of the lesion and the corpus callosum) was increased in lesioned mice. The morphology of these emigrated cells suggested that they were differentiating into glial cells. Three weeks after cortical injury, the majority of retrovirally-labeled cells in both groups of mice had migrated into the granule and periglomerular layers of the olfactory bulb. At 3 weeks, we still observed retrovirally-labeled glial cells in the corpus callosum and in the area of the injury in lesioned mice. These results suggest that cortical lesions cause a transient change in migration patterns of SVZ progeny, which is characterized by decreases in migration to the olfactory bulb but increased migration towards the injury. Our studies also suggest that cortical lesions induce the production of new glial cells which survive for at least 3 weeks after injury. The data support the concept that in the adult, SVZ cells can generate progeny that migrate towards injured areas and thus potentially be harnessed for neural repair.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/citología , Bulbo Olfatorio/citología , Células Madre/fisiología , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular , Corteza Cerebral/lesiones , Cuerpo Calloso/citología , Cuerpo Calloso/fisiología , Cartilla de ADN , Inmunohistoquímica , Masculino , Ratones , Neuroglía/citología , Plasticidad Neuronal/fisiología , Neuronas/citología , Bulbo Olfatorio/fisiología , Reacción en Cadena de la Polimerasa , Retroviridae , Factores de Tiempo
14.
PLoS One ; 9(8): e104335, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25098415

RESUMEN

Astrogliosis with glial scar formation after damage to the nervous system is a major impediment to axonal regeneration and functional recovery. The present study examined the role of ß1-integrin signaling in regulating astrocytic differentiation of neural stem cells. In the adult spinal cord ß1-integrin is expressed predominantly in the ependymal region where ependymal stem cells (ESCs) reside. ß1-integrin signaling suppressed astrocytic differentiation of both cultured ESCs and subventricular zone (SVZ) progenitor cells. Conditional knockout of ß1-integrin enhanced astrogliogenesis both by cultured ESCs and by SVZ progenitor cells. Previous studies have shown that injection into the injured spinal cord of a self-assembling peptide amphiphile that displays an IKVAV epitope (IKVAV-PA) limits glial scar formation and enhances functional recovery. Here we find that injection of IKVAV-PA induced high levels of ß1-integrin in ESCs in vivo, and that conditional knockout of ß1-integrin abolished the astroglial suppressive effects of IKVAV-PA in vitro. Injection into an injured spinal cord of PAs expressing two other epitopes known to interact with ß1-integrin, a Tenascin C epitope and the fibronectin epitope RGD, improved functional recovery comparable to the effects of IKVAV-PA. Finally we found that the effects of ß1-integrin signaling on astrogliosis are mediated by integrin linked kinase (ILK). These observations demonstrate an important role for ß1-integrin/ILK signaling in regulating astrogliosis from ESCs and suggest ILK as a potential target for limiting glial scar formation after nervous system injury.


Asunto(s)
Astrocitos/metabolismo , Diferenciación Celular/fisiología , Integrina beta1/metabolismo , Células-Madre Neurales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Astrocitos/citología , Diferenciación Celular/efectos de los fármacos , Epítopos/farmacología , Integrina beta1/genética , Laminina/farmacología , Ratones , Células-Madre Neurales/citología , Oligopéptidos/farmacología , Fragmentos de Péptidos/farmacología , Proteínas Serina-Treonina Quinasas/genética , Ratas , Ratas Long-Evans , Transducción de Señal/efectos de los fármacos
15.
Nat Rev Neurol ; 6(7): 363-72, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20551948

RESUMEN

Stem cell therapy is a potential treatment for spinal cord injury (SCI), and a variety of different stem cell types have been evaluated in animal models and humans with SCI. No consensus exists regarding the type of stem cell, if any, that will prove to be effective therapeutically. Most data suggest that no single therapy will be sufficient to overcome all the biological complications caused by SCI. Rationales for therapeutic use of stem cells for SCI include replacement of damaged neurons and glial cells, secretion of trophic factors, regulation of gliosis and scar formation, prevention of cyst formation, and enhancement of axon elongation. Most therapeutic approaches that use stem cells involve implantation of these cells into the spinal cord. The attendant risks of stem cell therapy for SCI--including tumor formation, or abnormal circuit formation leading to dysfunction--must be weighed against the potential benefits of this approach. This Review will examine the biological effects of SCI, the opportunities for stem cell treatment, and the types of stem cells that might be used therapeutically. The limited information available on the possible benefits of stem cell therapy to humans will also be discussed.


Asunto(s)
Traumatismos de la Médula Espinal/terapia , Trasplante de Células Madre , Axones/fisiología , Ensayos Clínicos como Asunto , Humanos , Regeneración Nerviosa/fisiología , Neuronas/patología , Neuronas/trasplante , Traumatismos de la Médula Espinal/patología
16.
Biomaterials ; 29(34): 4501-9, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18774605

RESUMEN

Peptide amphiphiles (PAs) previously designed in our laboratory are known to self-assemble into nanofibers that exhibit bioactivity both in vitro and in vivo. Self-assembly can be triggered by charge neutralization or salt-mediated screening of charged residues in their peptide sequences, and the resulting nanofibers can form macroscopic gels at concentrations as low as 0.5% by weight. Controlling the kinetics of gelation while retaining the bioactivity of nanofibers could be critical in tailoring these materials for specific clinical applications. We report here on a series of PAs with different rates of gelation resulting from changes in their peptide sequence without changing the bioactive segment. The pre-existence of hydrogen-bonded aggregates in the solution state of more hydrophobic PAs appears to accelerate gelation kinetics. Mutation of the peptide sequence to include more hydrophilic and bulky amino acids suppresses formation of these nuclei and effectively slows down gelation through self-assembly of the nanofiber network. The ability to modify gelation kinetics in self-assembling systems without disrupting bioactivity could be important for injectable therapies in regenerative medicine.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Péptidos/química , Tensoactivos/química , Tensoactivos/síntesis química , Cinética , Nanoestructuras/química , Pliegue de Proteína , Factores de Tiempo
17.
Dev Biol ; 269(2): 580-94, 2004 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15110721

RESUMEN

Although Sox1, Sox2, and Sox3 are all part of the Sox-B1 group of transcriptional regulators, only Sox1 appears to play a direct role in neural cell fate determination and differentiation. We find that overexpression of Sox1 but not Sox2 or Sox3 in cultured neural progenitor cells is sufficient to induce neuronal lineage commitment. Sox1 binds directly to the Hes1 promoter and suppresses Hes1 transcription, thus attenuating Notch signaling. Sox1 also binds to beta-catenin and suppresses beta-catenin-mediated TCF/LEF signaling, thus potentially attenuating the wnt signaling pathway. The C-terminus of Sox1 is required for both of these interactions. Sox1 also promotes exit of cells from cell cycle and up-regulates transcription of the proneural bHLH transcription factor neurogenin 1 (ngn1). These observations suggest that Sox1 works through multiple independent pathways to promote neuronal cell fate determination and differentiation.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas del Grupo de Alta Movilidad/fisiología , Neuronas/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Ciclo Celular , Diferenciación Celular , División Celular , Linaje de la Célula , Células Cultivadas , Proteínas del Citoesqueleto/fisiología , Proteínas de Homeodominio/genética , Humanos , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas , Factores de Transcripción SOXB1 , Transducción de Señal , Transactivadores/fisiología , Factor de Transcripción HES-1 , Factores de Transcripción/genética , beta Catenina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA