Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(33): e2301411120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37552755

RESUMEN

The acquisition of novel sexually dimorphic traits poses an evolutionary puzzle: How do new traits arise and become sex-limited? Recently acquired color vision, sexually dimorphic in animals like primates and butterflies, presents a compelling model for understanding how traits become sex-biased. For example, some Heliconius butterflies uniquely possess UV (ultraviolet) color vision, which correlates with the expression of two differentially tuned UV-sensitive rhodopsins, UVRh1 and UVRh2. To discover how such traits become sexually dimorphic, we studied Heliconius charithonia, which exhibits female-specific UVRh1 expression. We demonstrate that females, but not males, discriminate different UV wavelengths. Through whole-genome shotgun sequencing and assembly of the H. charithonia genome, we discovered that UVRh1 is present on the W chromosome, making it obligately female-specific. By knocking out UVRh1, we show that UVRh1 protein expression is absent in mutant female eye tissue, as in wild-type male eyes. A PCR survey of UVRh1 sex-linkage across the genus shows that species with female-specific UVRh1 expression lack UVRh1 gDNA in males. Thus, acquisition of sex linkage is sufficient to achieve female-specific expression of UVRh1, though this does not preclude other mechanisms, like cis-regulatory evolution from also contributing. Moreover, both this event, and mutations leading to differential UV opsin sensitivity, occurred early in the history of Heliconius. These results suggest a path for acquiring sexual dimorphism distinct from existing mechanistic models. We propose a model where gene traffic to heterosomes (the W or the Y) genetically partitions a trait by sex before a phenotype shifts (spectral tuning of UV sensitivity).


Asunto(s)
Mariposas Diurnas , Visión de Colores , Animales , Femenino , Visión de Colores/genética , Mariposas Diurnas/genética , Mariposas Diurnas/metabolismo , Ojo/metabolismo , Opsinas/genética , Opsinas/metabolismo , Rodopsina/metabolismo
2.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34921315

RESUMEN

Transposable elements (TEs) are self-replicating "genetic parasites" ubiquitous to eukaryotic genomes. In addition to conflict between TEs and their host genomes, TEs of the same family are in competition with each other. They compete for the same genomic niches while experiencing the same regime of copy-number selection. This suggests that competition among TEs may favor the emergence of new variants that can outcompete their ancestral forms. To investigate the sequence evolution of TEs, we developed a method to infer clades: collections of TEs that share SNP variants and represent distinct TE family lineages. We applied this method to a panel of 85 Drosophila melanogaster genomes and found that the genetic variation of several TE families shows significant population structure that arises from the population-specific expansions of single clades. We used population genetic theory to classify these clades into younger versus older clades and found that younger clades are associated with a greater abundance of sense and antisense piRNAs per copy than older ones. Further, we find that the abundance of younger, but not older clades, is positively correlated with antisense piRNA production, suggesting a general pattern where hosts preferentially produce antisense piRNAs from recently active TE variants. Together these findings suggest a pattern whereby new TE variants arise by mutation and then increase in copy number, followed by the host producing antisense piRNAs that may be used to silence these emerging variants.


Asunto(s)
Elementos Transponibles de ADN , Drosophila melanogaster , ARN Interferente Pequeño , Animales , Drosophila melanogaster/genética , Evolución Molecular , ARN Interferente Pequeño/genética
3.
Proc Natl Acad Sci U S A ; 115(21): 5492-5497, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735663

RESUMEN

Chromosomal inversions are widely thought to be favored by natural selection because they suppress recombination between alleles that have higher fitness on the same genetic background or in similar environments. Nonetheless, few selected alleles have been characterized at the molecular level. Gene expression profiling provides a powerful way to identify functionally important variation associated with inversions and suggests candidate phenotypes. However, altered genome structure itself might also impact gene expression by influencing expression profiles of the genes proximal to inversion breakpoint regions or by modifying expression patterns genome-wide due to rearranging large regulatory domains. In natural inversions, genetic differentiation and genome structure are inextricably linked. Here, we characterize differential expression patterns associated with two chromosomal inversions found in natural Drosophila melanogaster populations. To isolate the impacts of genome structure, we engineered synthetic chromosomal inversions on controlled genetic backgrounds with breakpoints that closely match each natural inversion. We find that synthetic inversions have negligible effects on gene expression. Nonetheless, natural inversions have broad-reaching regulatory impacts in cis and trans Furthermore, we find that differentially expressed genes associated with both natural inversions are enriched for loci associated with immune response to bacterial pathogens. Our results support the idea that inversions in D. melanogaster experience natural selection to maintain associations between functionally related alleles to produce complex phenotypic outcomes.


Asunto(s)
Evolución Biológica , Inversión Cromosómica , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Variación Genética , Genoma de los Insectos , Selección Genética , Animales , Mapeo Cromosómico , Flujo Genético , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo
4.
Nat Commun ; 12(1): 6590, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34782625

RESUMEN

The advent of animal husbandry and hunting increased human exposure to zoonotic pathogens. To understand how a zoonotic disease may have influenced human evolution, we study changes in human expression of anthrax toxin receptor 2 (ANTXR2), which encodes a cell surface protein necessary for Bacillus anthracis virulence toxins to cause anthrax disease. In immune cells, ANTXR2 is 8-fold down-regulated in all available human samples compared to non-human primates, indicating regulatory changes early in the evolution of modern humans. We also observe multiple genetic signatures consistent with recent positive selection driving a European-specific decrease in ANTXR2 expression in multiple tissues affected by anthrax toxins. Our observations fit a model in which humans adapted to anthrax disease following early ecological changes associated with hunting and scavenging, as well as a second period of adaptation after the rise of modern agriculture.


Asunto(s)
Evolución Molecular , Regulación de la Expresión Génica , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Animales , Antígenos Bacterianos , Bacillus anthracis/genética , Toxinas Bacterianas , Línea Celular , Regulación hacia Abajo , Humanos , Células K562 , Proteínas de la Membrana/metabolismo , Virulencia , Zoonosis
5.
Genetics ; 213(4): 1495-1511, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31666292

RESUMEN

Chromosomal inversions are fundamental drivers of genome evolution. In the main Afrotropical malaria vector species, belonging to the Anopheles gambiae species complex, inversions play an important role in local adaptation and have a rich history of cytological study. Despite the importance and ubiquity of some chromosomal inversions across the species complex, inversion breakpoints are often challenging to map molecularly due to the presence of large repetitive regions. Here, we develop an approach that uses Hi-C sequencing data to molecularly fine-map the breakpoints of inversions. We demonstrate that this approach is robust and likely to be widely applicable for both identification and fine-mapping inversion breakpoints in species whose inversions have heretofore been challenging to characterize. We apply our method to interrogate the previously unknown inversion breakpoints of 2Rbc and 2Rd in An. coluzzii We found that inversion breakpoints occur in large repetitive regions, and, strikingly, among three inversions analyzed, two breakpoints appear to be reused in two separate inversions. These breakpoint-adjacent regions are strongly enriched for the presence of a 30 bp satellite repeat sequence. Because low frequency inversion breakpoints are not correlated with genomic regions containing this satellite, we suggest that interrupting this particular repeat may result in arrangements with higher relative fitness. Additionally, we use heterozygous individuals to quantitatively investigate the impacts of somatic pairing in the regions immediately surrounding inversion breakpoints. Finally, we discuss important considerations for possible applications of this approach for inversion breakpoint identification in a range of organisms.


Asunto(s)
Anopheles/genética , Puntos de Rotura del Cromosoma , Inversión Cromosómica/genética , Mapeo Físico de Cromosoma , Animales , Intervalos de Confianza , Evolución Molecular , Genoma de los Insectos , Heterocigoto , Cariotipo , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA