Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Plant Physiol ; 172(1): 559-74, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27378816

RESUMEN

Fusarium head blight (FHB) is a cereal disease caused by Fusarium graminearum, a fungus able to produce type B trichothecenes on cereals, including deoxynivalenol (DON), which is harmful for humans and animals. Resistance to FHB is quantitative, and the mechanisms underlying resistance are poorly understood. Resistance has been related to the ability to conjugate DON into a glucosylated form, deoxynivalenol-3-O-glucose (D3G), by secondary metabolism UDP-glucosyltransferases (UGTs). However, functional analyses have never been performed within a single host species. Here, using the model cereal species Brachypodium distachyon, we show that the Bradi5g03300 UGT converts DON into D3G in planta. We present evidence that a mutation in Bradi5g03300 increases root sensitivity to DON and the susceptibility of spikes to F. graminearum, while overexpression confers increased root tolerance to the mycotoxin and spike resistance to the fungus. The dynamics of expression and conjugation suggest that the speed of DON conjugation rather than the increase of D3G per se is a critical factor explaining the higher resistance of the overexpressing lines. A detached glumes assay showed that overexpression but not mutation of the Bradi5g03300 gene alters primary infection by F. graminearum, highlighting the involvement of DON in early steps of infection. Together, these results indicate that early and efficient UGT-mediated conjugation of DON is necessary and sufficient to establish resistance to primary infection by F. graminearum and highlight a novel strategy to promote FHB resistance in cereals.


Asunto(s)
Brachypodium/genética , Glicosiltransferasas/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Brachypodium/enzimología , Resistencia a la Enfermedad/genética , Fusarium/metabolismo , Fusarium/fisiología , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucósidos/metabolismo , Glicosiltransferasas/metabolismo , Interacciones Huésped-Patógeno , Cinética , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tricotecenos/metabolismo , Uridina Difosfato/metabolismo
2.
BMC Genomics ; 15: 629, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-25063396

RESUMEN

BACKGROUND: Fusarium Head Blight (FHB) caused primarily by Fusarium graminearum (Fg) is one of the major diseases of small-grain cereals including bread wheat. This disease both reduces yields and causes quality losses due to the production of deoxynivalenol (DON), the major type B trichothecene mycotoxin. DON has been described as a virulence factor enabling efficient colonization of spikes by the fungus in wheat, but its precise role during the infection process is still elusive. Brachypodium distachyon (Bd) is a model cereal species which has been shown to be susceptible to FHB. Here, a functional genomics approach was performed in order to characterize the responses of Bd to Fg infection using a global transcriptional and metabolomic profiling of B. distachyon plants infected by two strains of F. graminearum: a wild-type strain producing DON (Fgdon+) and a mutant strain impaired in the production of the mycotoxin (Fgdon-). RESULTS: Histological analysis of the interaction of the Bd21 ecotype with both Fg strains showed extensive fungal tissue colonization with the Fgdon+ strain while the florets infected with the Fgdon- strain exhibited a reduced hyphal extension and cell death on palea and lemma tissues. Fungal biomass was reduced in spikes inoculated with the Fgdon- strain as compared with the wild-type strain. The transcriptional analysis showed that jasmonate and ethylene-signalling pathways are induced upon infection, together with genes encoding putative detoxification and transport proteins, antioxidant functions as well as secondary metabolite pathways. In particular, our metabolite profiling analysis showed that tryptophan-derived metabolites, tryptamine, serotonin, coumaroyl-serotonin and feruloyl-serotonin, are more induced upon infection by the Fgdon+ strain than by the Fgdon- strain. Serotonin was shown to exhibit a slight direct antimicrobial effect against Fg. CONCLUSION: Our results show that Bd exhibits defense hallmarks similar to those already identified in cereal crops. While the fungus uses DON as a virulence factor, the host plant preferentially induces detoxification and the phenylpropanoid and phenolamide pathways as resistance mechanisms. Together with its amenability in laboratory conditions, this makes Bd a very good model to study cereal resistance mechanisms towards the major disease FHB.


Asunto(s)
Brachypodium/microbiología , Fusarium/fisiología , Perfilación de la Expresión Génica , Metabolómica , Tricotecenos/biosíntesis , Antifúngicos/farmacología , Brachypodium/genética , Brachypodium/metabolismo , Brachypodium/fisiología , Fusarium/efectos de los fármacos , Fusarium/metabolismo , Interacciones Huésped-Patógeno , Serotonina/farmacología , Transducción de Señal/genética , Especificidad de la Especie
3.
Plant Cell Environ ; 37(5): 1114-29, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24131360

RESUMEN

Secondary metabolism plant glycosyltransferases (UGTs) ensure conjugation of sugar moieties to secondary metabolites (SMs) and glycosylation contributes to the great diversity, reactivity and regulation of SMs. UGT73B3 and UGT73B5, two UGTs of Arabidopsis thaliana (Arabidopsis), are involved in the hypersensitive response (HR) to the avirulent bacteria Pseudomonas syringae pv. tomato (Pst-AvrRpm1), but their function in planta is unknown. Here, we report that ugt73b3, ugt73b5 and ugt73b3 ugt73b5 T-DNA insertion mutants exhibited an accumulation of reactive oxygen species (ROS), an enhanced cell death during the HR to Pst-AvrRpm1, whereas glutathione levels increased in the single mutants. In silico analyses indicate that UGT73B3 and UGT73B5 belong to the early salicylic acid (SA)-induced genes whose pathogen-induced expression is co-regulated with genes related to cellular redox homeostasis and general detoxification. Analyses of metabolic alterations in ugt mutants reveal modification of SA and scopoletin contents which correlate with redox perturbation, and indicate quantitative modifications in the pattern of tryptophan-derived SM accumulation after Pst-AvrRpm1 inoculation. Our data suggest that UGT73B3 and UGT73B5 participate in regulation of redox status and general detoxification of ROS-reactive SMs during the HR to Pst-AvrRpm1, and that decreased resistance to Pst-AvrRpm1 in ugt mutants is tightly linked to redox perturbation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/microbiología , Resistencia a la Enfermedad/inmunología , Glucosiltransferasas/metabolismo , Pseudomonas syringae/fisiología , Metabolismo Secundario , Arabidopsis/citología , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Ácido Ascórbico/metabolismo , Secuencia de Bases , Muerte Celular , Simulación por Computador , Resistencia a la Enfermedad/efectos de los fármacos , Electrólitos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Glucosiltransferasas/genética , Glutatión/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Indoles/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Motivos de Nucleótidos/genética , Oxidación-Reducción/efectos de los fármacos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas/genética , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/farmacología , Escopoletina/metabolismo , Metabolismo Secundario/efectos de los fármacos , Metabolismo Secundario/genética , Tiazoles/metabolismo
4.
Mol Plant Microbe Interact ; 26(7): 781-92, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23550529

RESUMEN

Plant small-molecule UDP-glycosyltransferases (UGT) glycosylate a vast number of endogenous substances but also act in detoxification of metabolites produced by plant-pathogenic microorganisms. The ability to inactivate the Fusarium graminearum mycotoxin deoxynivalenol (DON) into DON-3-O-glucoside is crucial for resistance of cereals. We analyzed the UGT gene family of the monocot model species Brachypodium distachyon and functionally characterized two gene clusters containing putative orthologs of previously identified DON-detoxification genes from Arabidopsis thaliana and barley. Analysis of transcription showed that UGT encoded in both clusters are highly inducible by DON and expressed at much higher levels upon infection with a wild-type DON-producing F. graminearum strain compared with infection with a mutant deficient in DON production. Expression of these genes in a toxin-sensitive strain of Saccharomyces cerevisiae revealed that only two B. distachyon UGT encoded by members of a cluster of six genes homologous to the DON-inactivating barley HvUGT13248 were able to convert DON into DON-3-O-glucoside. Also, a single copy gene from Sorghum bicolor orthologous to this cluster and one of three putative orthologs of rice exhibit this ability. Seemingly, the UGT genes undergo rapid evolution and changes in copy number, making it difficult to identify orthologs with conserved substrate specificity.


Asunto(s)
Brachypodium/enzimología , Fusarium/patogenicidad , Glicosiltransferasas/metabolismo , Enfermedades de las Plantas/microbiología , Tricotecenos/metabolismo , Secuencia de Aminoácidos , Brachypodium/genética , Fusarium/química , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Orden Génico , Glucósidos/metabolismo , Glicosiltransferasas/genética , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Micotoxinas/genética , Micotoxinas/metabolismo , Oryza/enzimología , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sorghum/enzimología , Sorghum/genética , Especificidad de la Especie , Sintenía
5.
Plant Physiol ; 159(1): 286-98, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22408091

RESUMEN

Phosphite (Phi), a phloem-mobile oxyanion of phosphorous acid (H(3)PO(3)), protects plants against diseases caused by oomycetes. Its mode of action is unclear, as evidence indicates both direct antibiotic effects on pathogens as well as inhibition through enhanced plant defense responses, and its target(s) in the plants is unknown. Here, we demonstrate that the biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) exhibits an unusual biphasic dose-dependent response to Phi after inoculation of Arabidopsis (Arabidopsis thaliana), with characteristics of indirect activity at low doses (10 mm or less) and direct inhibition at high doses (50 mm or greater). The effect of low doses of Phi on Hpa infection was nullified in salicylic acid (SA)-defective plants (sid2-1, NahG) and in a mutant impaired in SA signaling (npr1-1). Compromised jasmonate (jar1-1) and ethylene (ein2-1) signaling or abscisic acid (aba1-5) biosynthesis, reactive oxygen generation (atrbohD), or accumulation of the phytoalexins camalexin (pad3-1) and scopoletin (f6'h1-1) did not affect Phi activity. Low doses of Phi primed the accumulation of SA and Pathogenesis-Related protein1 transcripts and mobilized two essential components of basal resistance, Enhanced Disease Susceptibility1 and Phytoalexin Deficient4, following pathogen challenge. Compared with inoculated, Phi-untreated plants, the gene expression, accumulation, and phosphorylation of the mitogen-activated protein kinase MPK4, a negative regulator of SA-dependent defenses, were reduced in plants treated with low doses of Phi. We propose that Phi negatively regulates MPK4, thus priming SA-dependent defense responses following Hpa infection.


Asunto(s)
Arabidopsis/microbiología , Oomicetos/patogenicidad , Fosfitos/farmacología , Enfermedades de las Plantas/microbiología , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Resistencia a la Enfermedad , Relación Dosis-Respuesta a Droga , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Indoles/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oomicetos/efectos de los fármacos , Oxilipinas/metabolismo , Fosforilación , Inmunidad de la Planta , Ácido Salicílico/metabolismo , Escopoletina/metabolismo , Transducción de Señal , Tiazoles/metabolismo
6.
Plant Physiol ; 153(4): 1692-705, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20543092

RESUMEN

While it is well established that reactive oxygen species can induce cell death, intracellularly generated oxidative stress does not induce lesions in the Arabidopsis (Arabidopsis thaliana) photorespiratory mutant cat2 when plants are grown in short days (SD). One interpretation of this observation is that a function necessary to couple peroxisomal hydrogen peroxide (H(2)O(2))-triggered oxidative stress to cell death is only operative in long days (LD). Like lesion formation, pathogenesis-related genes and camalexin were only induced in cat2 in LD, despite less severe intracellular redox perturbation compared with SD. Lesion formation triggered by peroxisomal H(2)O(2) was modified by introducing secondary mutations into the cat2 background and was completely absent in cat2 sid2 double mutants, in which ISOCHORISMATE SYNTHASE1 (ICS1) activity is defective. In addition to H(2)O(2)-induced salicylic acid (SA) accumulation, the sid2 mutation in ICS1 abolished a range of LD-dependent pathogen responses in cat2, while supplementation of cat2 with SA in SD activated these responses. Nontargeted transcript and metabolite profiling identified clusters of genes and small molecules associated with the daylength-dependent ICS1-mediated relay of H(2)O(2) signaling. The effect of oxidative stress in cat2 on resistance to biotic challenge was dependent on both growth daylength and ICS1. We conclude that (1) lesions induced by intracellular oxidative stress originating in the peroxisomes can be genetically reverted; (2) the isochorismate pathway of SA synthesis couples intracellular oxidative stress to cell death and associated disease resistance responses; and (3) camalexin accumulation was strictly dependent on the simultaneous presence of both H(2)O(2) and SA signals.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Peróxido de Hidrógeno/metabolismo , Transferasas Intramoleculares/metabolismo , Peroxisomas/metabolismo , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Inmunidad Innata , Indoles/metabolismo , Transferasas Intramoleculares/genética , Metaboloma , Mutación , Estrés Oxidativo , Fotoperiodo , Pseudomonas syringae , Ácido Salicílico/metabolismo , Tiazoles/metabolismo
7.
Plant Physiol ; 153(3): 1144-60, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20488891

RESUMEN

Glutathione is a major cellular thiol that is maintained in the reduced state by glutathione reductase (GR), which is encoded by two genes in Arabidopsis (Arabidopsis thaliana; GR1 and GR2). This study addressed the role of GR1 in hydrogen peroxide (H(2)O(2)) responses through a combined genetic, transcriptomic, and redox profiling approach. To identify the potential role of changes in glutathione status in H(2)O(2) signaling, gr1 mutants, which show a constitutive increase in oxidized glutathione (GSSG), were compared with a catalase-deficient background (cat2), in which GSSG accumulation is conditionally driven by H(2)O(2). Parallel transcriptomics analysis of gr1 and cat2 identified overlapping gene expression profiles that in both lines were dependent on growth daylength. Overlapping genes included phytohormone-associated genes, in particular implicating glutathione oxidation state in the regulation of jasmonic acid signaling. Direct analysis of H(2)O(2)-glutathione interactions in cat2 gr1 double mutants established that GR1-dependent glutathione status is required for multiple responses to increased H(2)O(2) availability, including limitation of lesion formation, accumulation of salicylic acid, induction of pathogenesis-related genes, and signaling through jasmonic acid pathways. Modulation of these responses in cat2 gr1 was linked to dramatic GSSG accumulation and modified expression of specific glutaredoxins and glutathione S-transferases, but there is little or no evidence of generalized oxidative stress or changes in thioredoxin-associated gene expression. We conclude that GR1 plays a crucial role in daylength-dependent redox signaling and that this function cannot be replaced by the second Arabidopsis GR gene or by thiol systems such as the thioredoxin system.


Asunto(s)
Arabidopsis/enzimología , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glutatión Reductasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxilipinas/farmacología , Hojas de la Planta/enzimología , Ácido Salicílico/farmacología , Antioxidantes/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/microbiología , Ácido Ascórbico/metabolismo , ADN Bacteriano/genética , Perfilación de la Expresión Génica , Glutatión/metabolismo , Glutatión Reductasa/genética , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/enzimología , Mutagénesis Insercional/efectos de los fármacos , Mutagénesis Insercional/genética , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Hojas de la Planta/citología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
8.
Plant Cell Environ ; 33(7): 1112-23, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20199623

RESUMEN

Cytosolic NADP-dependent isocitrate dehydrogenase (cICDH) produces 2-oxoglutarate (2-OG) and NADPH, and is encoded by a single gene in Arabidopsis thaliana. Three allelic lines carrying T-DNA insertions in this gene showed less than 10% extractable leaf ICDH activity, but only relatively small decreases in growth compared to wild-type Col0. Metabolite profiling by gas chromatography-time of flight-mass spectrometry (GC-TOF-MS) and high-performance liquid chromatography (HPLC) revealed that loss of cICDH function produced only small effects on leaf compounds involved in carbon and nitrogen assimilation. To analyse whether cICDH contributes to NADPH production under conditions of oxidative stress, the icdh mutation was introduced into the cat2 background, in which increased availability of H(2)O(2) causes perturbed redox homeostasis and induction of stress-related genes. Accumulation of oxidized glutathione and pathogen-related responses were enhanced in double cat2 icdh mutants compared to cat2. Single icdh mutants presented constitutive induction of PR genes, and enhanced resistance to bacteria in icdh, cat2 and cat2 icdh was quantitatively correlated with PR gene expression. However, the effect of icdh in both Col0 and cat2 backgrounds was not associated with enhanced accumulation of salicylic acid (SA). The results suggest that cICDH, previously considered mainly as an enzyme involved in amino acid synthesis, plays a role in redox signalling linked to pathogen responses.


Asunto(s)
Arabidopsis/enzimología , Isocitrato Deshidrogenasa/metabolismo , Estrés Oxidativo , Enfermedades de las Plantas/genética , Hojas de la Planta/enzimología , Arabidopsis/genética , Carbono/metabolismo , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Glutatión/metabolismo , Homeostasis , Peróxido de Hidrógeno/metabolismo , Metaboloma , Mutagénesis Insercional , Nitrógeno/metabolismo , Oxidación-Reducción , Enfermedades de las Plantas/microbiología
9.
J Exp Bot ; 61(12): 3355-70, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20530195

RESUMEN

Secondary metabolites (SMs) play key roles in pathogen responses, although knowledge of their precise functions is limited by insufficient characterization of their spatial response. The present study addressed this issue in Arabidopsis leaves by non-targeted and targeted metabolite profiling of Pseudomonas syringae pv. tomato (Pst-AvrRpm1) infected and adjacent uninfected leaf tissues. While overlap was observed between infected and uninfected areas, the non-targeted metabolite profiles of these regions differed quantitatively and clustering analysis underscores a differential distribution of SMs within distinct metabolic pathways. Targeted metabolite profiling revealed that infected tissues accumulate more salicylic acid and the characteristic phytoalexin of Arabidopsis, camalexin, than uninfected adjacent areas. On the contrary, the antioxidant coumarin derivative, scopoletin, was induced in infected tissues while its glucoside scopolin predominated in adjacent tissues. To elucidate the still unclear relationship between the accumulation of SMs and reactive oxygen species (ROS) accumulation and signalling, a catalase-deficient line (cat2) in which ROS signalling is up-regulated, was used. Metabolic analysis of cat2 suggests that some SMs have important interactions with ROS in redox homeostasis during the hypersensitive response to Pst-AvrRpm1. Overall, the study demonstrates that ROS availability influences both the amount and the pattern of infection-induced SM accumulation.


Asunto(s)
Arabidopsis/metabolismo , Enfermedades de las Plantas , Hojas de la Planta/metabolismo , Pseudomonas syringae/patogenicidad , Estallido Respiratorio , Arabidopsis/genética , Arabidopsis/microbiología , Cumarinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucósidos/metabolismo , Indoles/metabolismo , Metaboloma , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Transducción de Señal , Tiazoles/metabolismo
10.
Trends Plant Sci ; 10(11): 542-9, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16214386

RESUMEN

Glycosylation is a widespread modification of plant secondary metabolites. It is involved in various functions, including the regulation of hormone homeostasis, the detoxification of xenobiotics and the biosynthesis and storage of secondary compounds. In plants, these reactions are controlled by a specific subclass of the ubiquitous glycosyltransferase family. Although these enzymes have been studied intensively for many years, to date only a handful have been characterized in planta. Plant genome projects have uncovered unsuspected complexity within this family that is hindering the characterization of single genes. However, genome information also paves the way for the development of functional genomic approaches. Here, we highlight recent progress and the outcomes of novel strategies developed to uncover the physiological roles of these glycosyltransferases.


Asunto(s)
Glicosiltransferasas/metabolismo , Plantas/enzimología , Genoma de Planta , Glicosilación , Estructura Molecular , Plantas/genética
11.
Gene ; 282(1-2): 215-25, 2002 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-11814694

RESUMEN

SFR2, a member of the S gene family of receptor kinases, has been shown to be rapidly induced by wounding and bacterial infection suggesting that this gene may play a role in the defence response in Brassica. In this study we have compared the response of SFR2 to that of two other members of the SFR gene family in Brassica (SFR1 and SFR3) and to the closely-related ARK genes of Arabidopsis. Different patterns of mRNA accumulation were observed for different members of these families. SFR1 transcripts only accumulated in response to bacterial infection and their abundance was not significantly affected by wounding. Neither treatment induced accumulation of SFR3 transcripts. ARK1 and ARK3 resembled SFR2 in that their mRNAs accumulated in response to both wounding and bacterial infection. Both SFR1 and SFR2 mRNAs accumulated in response to exogenously applied salicylic acid (SA) and SA was shown to be required for induction of expression from the SFR2 promoter in Arabidopsis. However, the timing of the increase in endogenous SA levels following bacterial infiltration in Brassica indicates that the accumulation of SFR mRNA in the first few hours after infiltration does not occur in response to an increase in SA levels. We discuss the possibility that induction of SFR gene expression by SA may contribute to potentialization of the defence response. Taken together with previous studies that indicate a possible role during development, the data presented here suggest that the SFR and ARK gene families may have overlapping roles in both defence and during development.


Asunto(s)
Arabidopsis/genética , Brassica/genética , Proteínas Quinasas/genética , Arabidopsis/enzimología , Arabidopsis/microbiología , Brassica/enzimología , Brassica/microbiología , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Datos de Secuencia Molecular , Proteínas de Plantas/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Análisis de Secuencia de ADN , Estrés Mecánico , Xanthomonas campestris/crecimiento & desarrollo
12.
Plant Physiol Biochem ; 42(5): 367-71, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15191738

RESUMEN

Reliable methods for disease severity assessment are of crucial importance in the study of plant pathogen interactions, either for disease diagnostic on the field or to assess phenotypical differences in plants or pathogen strains. Currently, most of the assays used in fungal disease diagnostic rely on visual assessment of the symptoms, lesion diameter measurement or spore counting. However, these tests are tedious and often cannot discriminate between slightly different levels of resistance. Besides, they are not well suited to assess fungal development in the early phases of the infection, before macroscopical symptoms are visible or before sporulation. We describe here a pathogenicity assay based on the relative quantification of fungal and plant DNA in infected Arabidopsis thaliana leaves by means of real-time quantitative PCR. We show that it allows to monitor quantitatively the growth of the fungi Alternaria brassicicola and Botrytis cinerea in a sensitive and reliable way. Although highly sensitive, this test also exhibits a high robustness, which is crucial to significantly discriminate between lines displaying slightly different levels of resistance. Therefore, it allows to assess fungal development from the very first stages of infection and provides a fast and very practical alternative to currently described assays for phenotyping either plant mutant lines or fungal strains.


Asunto(s)
Alternaria/genética , Arabidopsis/genética , Hongos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Alternaria/metabolismo , Arabidopsis/microbiología , ADN/metabolismo , Cartilla de ADN/farmacología , ADN de Hongos/metabolismo , Hongos/metabolismo , Mutación , Fenotipo , Temperatura , Factores de Tiempo
13.
Plant Physiol ; 150(4): 1687-96, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19448037

RESUMEN

Siderophores (ferric ion chelators) are secreted by organisms in response to iron deficiency. The pathogenic enterobacterium Erwinia chrysanthemi produces two siderophores, achromobactin and chrysobactin (CB), which are required for systemic dissemination in host plants. Previous studies have shown that CB is produced in planta and can trigger the up-regulation of the plant ferritin gene AtFER1. To further investigate the function of CB during pathogenesis, we analyzed its effect in Arabidopsis (Arabidopsis thaliana) plants following leaf infiltration. CB activates the salicylic acid (SA)-mediated signaling pathway, while the CB ferric complex is ineffective, suggesting that the elicitor activity of this siderophore is due to its iron-binding property. We confirmed this hypothesis by testing the effect of siderophores structurally unrelated to CB, including deferrioxamine. There was no activation of SA-dependent defense in plants grown under iron deficiency before CB treatment. Transcriptional analysis of the genes encoding the root ferrous ion transporter and ferric chelate reductase, and determination of the activity of this enzyme in response to CB or deferrioxamine, showed that these compounds induce a leaf-to-root iron deficiency signal. This root response as well as ferritin gene up-regulation in the leaf were not compromised in a SA-deficient mutant line. Using the Arabidopsis-E. chrysanthemi pathosystem, we have shown that CB promotes bacterial growth in planta and can modulate plant defenses through an antagonistic mechanism between SA and jasmonic acid signaling cascades. Collectively, these data reveal a new link between two processes mediated by SA and iron in response to microbial siderophores.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Dickeya chrysanthemi/metabolismo , Fenómenos del Sistema Inmunológico/efectos de los fármacos , Hierro/metabolismo , Sideróforos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Dickeya chrysanthemi/efectos de los fármacos , Dickeya chrysanthemi/crecimiento & desarrollo , Dipéptidos/farmacología , Etilenos/metabolismo , FMN Reductasa/genética , FMN Reductasa/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Quelantes del Hierro/farmacología , Modelos Biológicos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/microbiología , Ácido Salicílico/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Regulación hacia Arriba/efectos de los fármacos
14.
PLoS One ; 4(10): e7364, 2009 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-19812700

RESUMEN

BACKGROUND: Although it is a crucial cellular process required for both normal development and to face stress conditions, the control of programmed cell death in plants is not fully understood. We previously reported the isolation of ATXR5 and ATXR6, two PCNA-binding proteins that could be involved in the regulation of cell cycle or cell death. A yeast two-hybrid screen using ATXR5 as bait captured AtIPS1, an enzyme which catalyses the committed step of myo-inositol (MI) biosynthesis. atips1 mutants form spontaneous lesions on leaves, raising the possibility that MI metabolism may play a role in the control of PCD in plants. In this work, we have characterised atips1 mutants to gain insight regarding the role of MI in PCD regulation. METHODOLOGY/PRINCIPAL FINDINGS: - lesion formation in atips1 mutants depends of light intensity, is due to PCD as evidenced by TUNEL labelling of nuclei, and is regulated by phytohormones such as salicylic acid - MI and galactinol are the only metabolites whose accumulation is significantly reduced in the mutant, and supplementation of the mutant with these compounds is sufficient to prevent PCD - the transcriptome profile of the mutant is extremely similar to that of lesion mimic mutants such as cpr5, or wild-type plants infected with pathogens. CONCLUSION/SIGNIFICANCE: Taken together, our results provide strong evidence for the role of MI or MI derivatives in the regulation of PCD. Interestingly, there are three isoforms of IPS in Arabidopsis, but AtIPS1 is the only one harbouring a nuclear localisation sequence, suggesting that nuclear pools of MI may play a specific role in PCD regulation and opening new research prospects regarding the role of MI in the prevention of tumorigenesis. Nevertheless, the significance of the interaction between AtIPS1 and ATXR5 remains to be established.


Asunto(s)
Apoptosis , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Inositol/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclo Celular , Muerte Celular , Perfilación de la Expresión Génica , Sistema Inmunológico , Metiltransferasas/metabolismo , Mutación , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/metabolismo , Factores de Tiempo , Técnicas del Sistema de Dos Híbridos
15.
Plant Physiol ; 139(4): 1890-901, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16306146

RESUMEN

The genome sequencing of Arabidopsis (Arabidopsis thaliana) has revealed that secondary metabolism plant glycosyltransferases (UGTs) are encoded by an unexpectedly large multigenic family of 120 members. Very little is known about their actual function in planta, in particular during plant pathogen interactions. Among them, members of the group D are of particular interest since they are related to UGTs involved in stress-inducible responses in other plant species. We provide here a detailed analysis of the expression profiles of this group of Arabidopsis UGTs following infection with Pseudomonas syringae pv tomato or after treatment with salicylic acid, methyljasmonate, and hydrogen peroxide. Members of the group D displayed distinct induction profiles, indicating potential roles in stress or defense responses notably for UGT73B3 and UGT73B5. Analysis of UGT expression in Arabidopsis defense-signaling mutants further revealed that their induction is methyljasmonate independent, but partially salicylic acid dependent. T-DNA tagged mutants (ugt73b3 and ugt73b5) exhibited decreased resistance to P. syringae pv tomato-AvrRpm1, indicating that expression of the corresponding UGT genes is necessary during the hypersensitive response. These results emphasize the importance of plant secondary metabolite UGTs in plant-pathogen interactions and provide foundation for future understanding of the exact role of UGTs during the hypersensitive response.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Arabidopsis/microbiología , Glucosiltransferasas/genética , Glicosiltransferasas/genética , Pseudomonas syringae/patogenicidad , Acetatos/farmacología , Arabidopsis/genética , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Ciclopentanos/farmacología , ADN de Plantas/genética , Expresión Génica , Genes de Plantas , Glucosiltransferasas/clasificación , Glucosiltransferasas/metabolismo , Glicosiltransferasas/clasificación , Glicosiltransferasas/metabolismo , Peróxido de Hidrógeno/farmacología , Datos de Secuencia Molecular , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxilipinas , Filogenia , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Transducción de Señal , Virulencia
16.
Plant Mol Biol ; 58(2): 229-45, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-16027976

RESUMEN

The combined knowledge of the Arabidopsis genome and transcriptome now allows to get an integrated view of the dynamics and evolution of metabolic pathways in plants. We used publicly available sets of microarray data obtained in a wide range of different stress and developmental conditions to investigate the co-expression of genes encoding enzymes of secondary metabolism pathways, in particular indoles, phenylpropanoids, and flavonoids. We performed hierarchical clustering of gene expression profiles and found that major enzymes of each pathway display a clear and robust co-expression throughout all the conditions studied. Moreover, detailed analysis evidenced that some genes display co-regulation in particular physiological conditions only, certainly reflecting their modular recruitment into stress- or developmentally regulated biosynthetic pathways. The combination of these microarray data with sequence analysis allows to draw very precise hypotheses on the function of otherwise uncharacterized genes. To illustrate this approach, we focused our analysis on secondary metabolism glycosyltransferases (UGTs), a multigenic family involved in the conjugation of small molecules to sugars like glucose. We propose that UGT74B1 and UGT74C1 may be involved in aromatic and aliphatic glucosinolates synthesis, respectively. We also suggest that UGT75C1 may function as an anthocyanin-5-O-glucosyltransferase in planta. Therefore, this data-mining approach appears very powerful for the functional prediction of unknown genes, and could be transposed to virtually any other gene family. Finally, we suggest that analysis of expression pattern divergence of duplicated genes also provides some insight into the mechanisms of metabolic pathway evolution.


Asunto(s)
Arabidopsis/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Análisis por Conglomerados , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Bases de Datos de Ácidos Nucleicos , Evolución Molecular , Flavonoides/metabolismo , Perfilación de la Expresión Génica/estadística & datos numéricos , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenilpropionatos/metabolismo , Filogenia , Transcripción Genética/genética , Triptófano/metabolismo
17.
Plant Mol Biol ; 54(1): 137-46, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15159640

RESUMEN

Nicotiana tabacum Togt encodes a scopoletin glucosyltransferase (UDPglucose:scopoletin O -beta-D-glucosyltrans- ferase, EC 2.4.1.128) known to act in vitro on many different substrates including the 6-methoxy-7-hydroxy- coumarin scopoletin. This phenolic compound accumulates in vast amounts, essentially in its glucosylated form scopolin, in tobacco during the hypersensitive response (HR) to tobacco mosaic virus (TMV). To identify the physiological role of this pathogen-inducible UDP-Glc glucosyltransferase (UGT), we generated TOGT over-expressing transgenic plants. Although no endogenous scopoletin or scopolin could be detected before infection, the accumulation of both the aglycone and the glucoside was found to be 2-fold higher in transgenic plants after inoculation with TMV than in wild-type plants. Scopoletin UGT activity in plants over-expressing Togt was significantly higher during the HR than in control plants. This up-regulated activity was associated with a strong increase of the bright blue fluorescence surrounding the HR-necrotic lesions under UV light, which is known to correlate with scopoletin and scopolin abundance. Necrosis appeared sooner in transgenic plants and lesions developed faster, suggesting an accelerated HR. Unexpectedly, the viral content in each lesion was not significantly different in transgenic and in wild-type plants. These results are discussed in relation to the role of TOGT as the major UDP-Glc: scopoletin glucosyltransferase and to the importance of scopoletin accumulation during the HR.


Asunto(s)
Glucosiltransferasas/genética , Nicotiana/genética , Enfermedades de las Plantas/genética , Virus del Mosaico del Tabaco/crecimiento & desarrollo , Cumarinas/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucósidos/metabolismo , Glucosiltransferasas/metabolismo , Inmunidad Innata/genética , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Escopoletina/metabolismo , Factores de Tiempo , Nicotiana/metabolismo , Nicotiana/virología , Virus del Mosaico del Tabaco/metabolismo
18.
Plant Cell ; 14(5): 1093-107, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12034899

RESUMEN

Plant UDP-Glc:phenylpropanoid glucosyltransferases (UGTs) catalyze the transfer of Glc from UDP-Glc to numerous substrates and regulate the activity of compounds that play important roles in plant defense against pathogens. We previously characterized two tobacco salicylic acid- and pathogen-inducible UGTs (TOGTs) that act very efficiently on the hydroxycoumarin scopoletin and on hydroxycinnamic acids. To identify the physiological roles of these UGTs in plant defense, we generated TOGT-depleted tobacco plants by antisense expression. After inoculation with Tobacco mosaic virus (TMV), TOGT-inhibited plants exhibited a significant decrease in the glucoside form of scopoletin (scopolin) and a decrease in scopoletin UGT activity. Unexpectedly, free scopoletin levels also were reduced in TOGT antisense lines. Scopolin and scopoletin reduction in TOGT-depleted lines resulted in a strong decrease of the blue fluorescence in cells surrounding TMV lesions and was associated with weakened resistance to infection with TMV. Consistent with the proposed role of scopoletin as a reactive oxygen intermediate (ROI) scavenger, TMV also triggered a more sustained ROI accumulation in TOGT-downregulated lines. Our results demonstrate the involvement of TOGT in scopoletin glucosylation in planta and provide evidence of the crucial role of a UGT in plant defense responses. We propose that TOGT-mediated glucosylation is required for scopoletin accumulation in cells surrounding TMV lesions, where this compound could both exert a direct antiviral effect and participate in ROI buffering.


Asunto(s)
Glucosiltransferasas/genética , Nicotiana/enzimología , Enfermedades de las Plantas/virología , Ácido Clorogénico/metabolismo , Ácido Clorogénico/farmacología , Cumarinas/metabolismo , Cumarinas/farmacología , Regulación hacia Abajo , Inducción Enzimática/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucósidos/metabolismo , Glucósidos/farmacología , Glucosiltransferasas/biosíntesis , Peróxido de Hidrógeno/metabolismo , Inmunidad Innata/genética , Datos de Secuencia Molecular , Mutación , Estrés Oxidativo , Fenilanina Amoníaco-Liasa/biosíntesis , Fenilanina Amoníaco-Liasa/genética , Enfermedades de las Plantas/genética , Hojas de la Planta/virología , Plantas Modificadas Genéticamente , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Escopoletina/metabolismo , Escopoletina/farmacología , Transducción de Señal , Nicotiana/genética , Nicotiana/virología , Virus del Mosaico del Tabaco/efectos de los fármacos , Virus del Mosaico del Tabaco/crecimiento & desarrollo
19.
Plant Cell ; 16(8): 2217-32, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15269331

RESUMEN

The hypersensitive response (HR) is a programmed cell death that is commonly associated with plant disease resistance. A novel lesion mimic mutant, vad1 (for vascular associated death1), that exhibits light conditional appearance of propagative HR-like lesions along the vascular system was identified. Lesion formation is associated with expression of defense genes, production of high levels of salicylic acid (SA), and increased resistance to virulent and avirulent strains of Pseudomonas syringae pv tomato. Analyses of the progeny from crosses between vad1 plants and either nahG transgenic plants, sid1, nonexpressor of PR1 (npr1), enhanced disease susceptibility1 (eds1), or non-race specific disease resistance1 (ndr1) mutants, revealed the vad1 cell death phenotype to be dependent on SA biosynthesis but NPR1 independent; in addition, both EDS1 and NDR1 are necessary for the proper timing and amplification of cell death as well as for increased resistance to Pseudomonas strains. VAD1 encodes a novel putative membrane-associated protein containing a GRAM domain, a lipid or protein binding signaling domain, and is expressed in response to pathogen infection at the vicinity of the hypersensitive lesions. VAD1 might thus represent a new potential function in cell death control associated with cells in the vicinity of vascular bundles.


Asunto(s)
Apoptosis/fisiología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Inmunidad Innata/fisiología , Proteínas de la Membrana/metabolismo , Enfermedades de las Plantas , Factores de Transcripción , Arabidopsis/anatomía & histología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/genética , Mutación , Fenotipo , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , Proteínas/genética , Proteínas/metabolismo , Pseudomonas syringae/patogenicidad , Ácido Salicílico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA