Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Cell Sci ; 136(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37519219

RESUMEN

The ErbB-family receptors play pivotal roles in the proliferation, migration and survival of epithelial cells. Because our knowledge on the ErbB-family receptors has been largely obtained by the exogenous application of their ligands, it remains unknown to what extent each of the ErbB members contributes to these outputs. We here knocked out each ErbB gene, various combinations of ErbB genes or all ErbB genes in Madin-Darby canine kidney cells to delineate the contribution of each gene. ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1, respectively) activation waves during collective cell migration were mediated primarily by ErbB1 and secondarily by the ErbB2 and ErbB3 heterodimer. Either ErbB1 or the ErbB2 and ErbB3 complex was sufficient for the G1/S progression. The saturation cell density was markedly reduced in cells deficient in all ErbB proteins, but not in cells retaining only ErbB2, which cannot bind to ligands. Thus, a ligand-independent ErbB2 activity is sufficient for preventing apoptosis at high cell density. In short, systematic knockout of ErbB-family genes has delineated the roles of each ErbB receptor.


Asunto(s)
Receptor ErbB-2 , Transducción de Señal , Animales , Perros , Ligandos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Fosforilación , Genes erbB , Proliferación Celular/genética , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo
2.
Mol Cell ; 68(3): 626-640.e5, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29107535

RESUMEN

Eukaryotic cells spend most of their life in interphase of the cell cycle. Understanding the rich diversity of metabolic and genomic regulation that occurs in interphase requires the demarcation of precise phase boundaries in situ. Here, we report the properties of two genetically encoded fluorescence sensors, Fucci(CA) and Fucci(SCA), which enable real-time monitoring of interphase and cell-cycle biology. We re-engineered the Cdt1-based sensor from the original Fucci system to respond to S phase-specific CUL4Ddb1-mediated ubiquitylation alone or in combination with SCFSkp2-mediated ubiquitylation. In cultured cells, Fucci(CA) produced a sharp triple color-distinct separation of G1, S, and G2, while Fucci(SCA) permitted a two-color readout of G1 and S/G2. Fucci(CA) applications included tracking the transient G1 phase of rapidly dividing mouse embryonic stem cells and identifying a window for UV-irradiation damage in S phase. These results show that Fucci(CA) is an essential tool for quantitative studies of interphase cell-cycle regulation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Proteínas Cullin/metabolismo , Células Madre Embrionarias/fisiología , Colorantes Fluorescentes/metabolismo , Proteínas Luminiscentes/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas Cullin/genética , Células Madre Embrionarias/citología , Genes Reporteros , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Ratones
3.
Cell Struct Funct ; 48(2): 135-144, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37394513

RESUMEN

We cloned and characterized two new coral fluorescent proteins: h2-3 and 1-41. h2-3 formed an obligate dimeric complex and exhibited bright green fluorescence. On the other hand, 1-41 formed a highly multimeric complex and exhibited dim red fluorescence. We engineered 1-41 into AzaleaB5, a practically useful red-emitting fluorescent protein for cellular labeling applications. We fused h2-3 and AzaleaB5 to the ubiquitination domains of human Geminin and Cdt1, respectively, to generate a new color variant of Fucci (Fluorescent Ubiquitination-based Cell-Cycle Indicator): Fucci5. We found Fucci5 provided more reliable nuclear labeling for monitoring cell-cycle progression than the 1st and 2nd generations that used mAG/mKO2 and mVenus/mCherry, respectively.Key words: fluorescent protein, cell cycle, time-lapse imaging, flow cytometry.


Asunto(s)
Proteínas de Ciclo Celular , Colorantes , Humanos , Color , División Celular , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Microscopía Fluorescente , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo
4.
Cell ; 132(3): 487-98, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18267078

RESUMEN

The cell-cycle transition from G1 to S phase has been difficult to visualize. We have harnessed antiphase oscillating proteins that mark cell-cycle transitions in order to develop genetically encoded fluorescent probes for this purpose. These probes effectively label individual G1 phase nuclei red and those in S/G2/M phases green. We were able to generate cultured cells and transgenic mice constitutively expressing the cell-cycle probes, in which every cell nucleus exhibits either red or green fluorescence. We performed time-lapse imaging to explore the spatiotemporal patterns of cell-cycle dynamics during the epithelial-mesenchymal transition of cultured cells, the migration and differentiation of neural progenitors in brain slices, and the development of tumors across blood vessels in live mice. These mice and cell lines will serve as model systems permitting unprecedented spatial and temporal resolution to help us better understand how the cell cycle is coordinated with various biological events.


Asunto(s)
Ciclo Celular , Técnicas Citológicas , Animales , Células COS , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Células Cultivadas , Chlorocebus aethiops , Fluorescencia , Geminina , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Microscopía Confocal , Datos de Secuencia Molecular , Morfogénesis , Neoplasias/patología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ubiquitinación
5.
J Biol Chem ; 291(7): 3439-54, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26670608

RESUMEN

Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation.


Asunto(s)
Núcleo Celular/metabolismo , Citocinesis , Células Progenitoras Mieloides/metabolismo , Osteoclastos/metabolismo , Osteólisis/metabolismo , Poliploidía , Ligando RANK/metabolismo , Animales , Bencimidazoles/farmacología , Biomarcadores/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Fusión Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/patología , Células Cultivadas , Cruzamientos Genéticos , Citocinesis/efectos de los fármacos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones Transgénicos , Células Progenitoras Mieloides/citología , Células Progenitoras Mieloides/efectos de los fármacos , Células Progenitoras Mieloides/patología , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Osteoclastos/patología , Osteogénesis/efectos de los fármacos , Osteólisis/patología , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/agonistas , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinoxalinas/farmacología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
6.
Development ; 140(1): 237-46, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23175634

RESUMEN

Fucci technology makes possible the distinction between live cells in the G(1) and S/G(2)/M phases by dual-color imaging. This technology relies upon ubiquitylation-mediated proteolysis, and transgenic mice expressing Fucci provide a powerful model system with which to study the coordination of the cell cycle and development. The mice were initially generated using the CAG promoter; lines expressing the G(1) and S/G(2)/M phase probes that emitted orange (mKO2) and green (mAG) fluorescence, respectively, were separately constructed. Owing to cell type-biased strength of the CAG promoter as well as the positional effects of random transgenesis, however, we noticed some variability in Fucci expression levels. To control more reliably the expression of cell cycle probes, we used different genetic approaches to create two types of reporter mouse lines with Fucci2 and Rosa26 transcriptional machinery. Fucci2 is a recently developed Fucci derivative, which emits red (mCherry) and green (mVenus) fluorescence and provides better color contrast than Fucci. A new transgenic line, R26p-Fucci2, utilizes the Rosa26 promoter and harbors the G(1) and S/G(2)/M phase probes in a single transgene to preserve their co-inheritance. In the other R26R-Fucci2 approach, the two probes are incorporated into Rosa26 locus conditionally. The Cre-mediated loxP recombination technique thus allows researchers to design cell-type-specific Fucci2 expression. By performing time-lapse imaging experiments using R26p-Fucci2 and R26-Fucci2 in which R26R-Fucci2 had undergone germline loxP recombination, we demonstrated the great promise of these mouse reporters for studying cell cycle behavior in vivo.


Asunto(s)
Ciclo Celular/genética , Embrión de Mamíferos/citología , Genes Reporteros , Regiones Promotoras Genéticas/genética , Proteínas/genética , Imagen de Lapso de Tiempo/métodos , Animales , Embrión de Mamíferos/fisiología , Fluorescencia , Fase G1/genética , Fase G2/genética , Ratones , Ratones Transgénicos , ARN no Traducido , Fase S/genética , Ubiquitinación/genética
7.
Development ; 140(22): 4624-32, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24154524

RESUMEN

The majority of mammalian somatic cells maintain a diploid genome. However, some mammalian cell types undergo multiple rounds of genome replication (endoreplication) as part of normal development and differentiation. For example, trophoblast giant cells (TGCs) in the placenta become polyploid through endoreduplication (bypassed mitosis), and megakaryocytes (MKCs) in the bone marrow become polyploid through endomitosis (abortive mitosis). During the normal mitotic cell cycle, geminin and Cdt1 are involved in 'licensing' of replication origins, which ensures that replication occurs only once in a cell cycle. Their protein accumulation is directly regulated by two E3 ubiquitin ligase activities, APC(Cdh1) and SCF(Skp2), which oscillate reciprocally during the cell cycle. Although proteolysis-mediated, oscillatory accumulation of proteins has been documented in endoreplicating Drosophila cells, it is not known whether the ubiquitin oscillators that control normal cell cycle transitions also function during mammalian endoreplication. In this study, we used transgenic mice expressing Fucci fluorescent cell-cycle probes that report the activity of APC(Cdh1) and SCF(Skp2). By performing long-term, high temporal-resolution Fucci imaging, we were able to visualize reciprocal activation of APC(Cdh1) and SCF(Skp2) in differentiating TGCs and MKCs grown in our custom-designed culture wells. We found that TGCs and MKCs both skip cytokinesis, but in different ways, and that the reciprocal activation of the ubiquitin oscillators in MKCs varies with the polyploidy level. We also obtained three-dimensional reconstructions of highly polyploid TGCs in whole, fixed mouse placentas. Thus, the Fucci technique is able to reveal the spatiotemporal regulation of the endoreplicative cell cycle during differentiation.


Asunto(s)
Endorreduplicación , Mamíferos/embriología , Ubiquitina/metabolismo , Animales , Supervivencia Celular , Células Cultivadas , Femenino , Megacariocitos/citología , Megacariocitos/metabolismo , Ratones , Ratones Transgénicos , Mitosis , Imagen Molecular , Placenta/citología , Placenta/metabolismo , Embarazo , Reproducibilidad de los Resultados , Trofoblastos/citología , Trofoblastos/metabolismo
8.
Dev Biol ; 393(1): 10-23, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24975012

RESUMEN

The formation of vascular structures requires precisely controlled proliferation of endothelial cells (ECs), which occurs through strict regulation of the cell cycle. However, the mechanism by which EC proliferation is coordinated during vascular formation remains largely unknown, since a method of analyzing cell-cycle progression of ECs in living animals has been lacking. Thus, we devised a novel system allowing the cell-cycle progression of ECs to be visualized in vivo. To achieve this aim, we generated a transgenic zebrafish line that expresses zFucci (zebrafish fluorescent ubiquitination-based cell cycle indicator) specifically in ECs (an EC-zFucci Tg line). We first assessed whether this system works by labeling the S phase ECs with EdU, then performing time-lapse imaging analyses and, finally, examining the effects of cell-cycle inhibitors. Employing the EC-zFucci Tg line, we analyzed the cell-cycle progression of ECs during vascular development in different regions and at different time points and found that ECs proliferate actively in the developing vasculature. The proliferation of ECs also contributes to the elongation of newly formed blood vessels. While ECs divide during elongation in intersegmental vessels, ECs proliferate in the primordial hindbrain channel to serve as an EC reservoir and migrate into basilar and central arteries, thereby contributing to new blood vessel formation. Furthermore, while EC proliferation is not essential for the formation of the basic framework structures of intersegmental and caudal vessels, it appears to be required for full maturation of these vessels. In addition, venous ECs mainly proliferate in the late stage of vascular development, whereas arterial ECs become quiescent at this stage. Thus, we anticipate that the EC-zFucci Tg line can serve as a tool for detailed studies of the proliferation of ECs in various forms of vascular development in vivo.


Asunto(s)
Ciclo Celular/genética , Endotelio Vascular/fisiología , Neovascularización Fisiológica/genética , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/genética , Ciclo Celular/fisiología , División Celular , Proliferación Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Endotelio Vascular/citología , Técnicas de Silenciamiento del Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Morfolinos/genética , Pez Cebra/genética , Proteínas de Pez Cebra/biosíntesis
9.
Biochem Biophys Res Commun ; 457(1): 7-11, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25534850

RESUMEN

Fluorescent ubiquitination-based cell cycle indicator (Fucci) technology utilizing the cell cycle-dependent proteolysis of ubiquitin oscillators enables visualization of cell cycle progression in living cells. The Fucci probe consists of two chimeric fluorescent proteins, FucciS/G2/M and FucciG1, which label the nuclei of cells in S/G2/M phase green and those in G1 phase red, respectively. In this study, we generated Fucci transgenic mice and analyzed transgene expression in hematopoietic cells using flow cytometry. The FucciS/G2/M-#474 and FucciG1-#639 mouse lines exhibited high-level transgene expression in most hematopoietic cell populations. The FucciG1-#610 line expressed the transgene at high levels predominantly in the hematopoietic stem cell (HSC) population. Analysis of the HSC (CD34(-)KSL: CD34(-/low)c-Kit(+)Sca-1(+)lineage marker(-)) population in the transgenic mice expressing both FucciS/G2/M and FucciG1 (#474/#610) confirmed that more than 95% of the cells were in G0/G1 phase, although the FucciG1(red) intensity was heterogeneous. An in vivo competitive repopulation assay revealed that repopulating activity resided largely in the FucciG1(red)(high) fraction of CD34(-)KSL cells. Thus, the CD34(-)KSL HSC population can be further purified on the basis of the Fucci intensity.


Asunto(s)
Ciclo Celular , Separación Celular/métodos , Colorantes Fluorescentes/metabolismo , Células Madre Hematopoyéticas/citología , Ubiquitinación , Animales , Citometría de Flujo , Fluorescencia , Células Madre Hematopoyéticas/metabolismo , Ratones Transgénicos , Transgenes
10.
Biochem Biophys Res Commun ; 464(4): 1000-1007, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26168730

RESUMEN

The precise assemblage of several types of cardiac precursors controls heart organogenesis. The cardiac precursors show dynamic movement during early development and then form the complicated heart structure. However, cardiomyocyte movements inside the newly organized mammalian heart remain unclear. We previously established the method of ex vivo time-lapse imaging of the murine heart to study cardiomyocyte behavior by using the Fucci (fluorescent ubiquitination-based cell cycle indicator) system, which can effectively label individual G1, S/G2/M, and G1/S-transition phase nuclei in living cardiomyocytes as red, green, and yellow, respectively. Global analysis of gene expression in Fucci green positive ventricular cardiomyocytes confirmed that cell cycle regulatory genes expressed in G1/S, S, G2/M, and M phase transitions were upregulated. Interestingly, pathway analysis revealed that many genes related to the cell cycle were significantly upregulated in the Fucci green positive ventricular cardiomyocytes, while only a small number of genes related to cell motility were upregulated. Time-lapse imaging showed that murine proliferating cardiomyocytes did not exhibit dynamic movement inside the heart, but stayed on site after entering the cell cycle.


Asunto(s)
Corazón Fetal/citología , Miocardio/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Animales , Puntos de Control del Ciclo Celular/genética , Movimiento Celular , Proliferación Celular , Femenino , Corazón Fetal/embriología , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Corazón/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocardio/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo
11.
PLoS Comput Biol ; 10(12): e1003957, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25474567

RESUMEN

In multicellular organism development, a stochastic cellular response is observed, even when a population of cells is exposed to the same environmental conditions. Retrieving the spatiotemporal regulatory mode hidden in the heterogeneous cellular behavior is a challenging task. The G1/S transition observed in cell cycle progression is a highly stochastic process. By taking advantage of a fluorescence cell cycle indicator, Fucci technology, we aimed to unveil a hidden regulatory mode of cell cycle progression in developing zebrafish. Fluorescence live imaging of Cecyil, a zebrafish line genetically expressing Fucci, demonstrated that newly formed notochordal cells from the posterior tip of the embryonic mesoderm exhibited the red (G1) fluorescence signal in the developing notochord. Prior to their initial vacuolation, these cells showed a fluorescence color switch from red to green, indicating G1/S transitions. This G1/S transition did not occur in a synchronous manner, but rather exhibited a stochastic process, since a mixed population of red and green cells was always inserted between newly formed red (G1) notochordal cells and vacuolating green cells. We termed this mixed population of notochordal cells, the G1/S transition window. We first performed quantitative analyses of live imaging data and a numerical estimation of the probability of the G1/S transition, which demonstrated the existence of a posteriorly traveling regulatory wave of the G1/S transition window. To obtain a better understanding of this regulatory mode, we constructed a mathematical model and performed a model selection by comparing the results obtained from the models with those from the experimental data. Our analyses demonstrated that the stochastic G1/S transition window in the notochord travels posteriorly in a periodic fashion, with doubled the periodicity of the neighboring paraxial mesoderm segmentation. This approach may have implications for the characterization of the pathophysiological tissue growth mode.


Asunto(s)
Ciclo Celular/fisiología , Embrión no Mamífero/citología , Desarrollo Embrionario/fisiología , Modelos Biológicos , Animales , Biología Computacional , Simulación por Computador , Microscopía Fluorescente/métodos , Pez Cebra
12.
J Mol Cell Cardiol ; 72: 241-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24704900

RESUMEN

Mammalian cardiomyocytes withdraw from the cell cycle shortly after birth, although it remains unclear how cardiomyocyte cell cycles behave during development. Compared to conventional immunohistochemistry in static observation, time-lapse imaging can reveal comprehensive data in hard-to-understand biological phenomenon. However, there are no reports of an established protocol of successful time-lapse imaging in mammalian heart. Thus, it is valuable to establish a time-lapse imaging system to enable the observation of cell cycle dynamics in living murine cardiomyocytes. This study sought to establish time-lapse imaging of murine heart to study cardiomyocyte cell cycle behavior. The Fucci (fluorescent ubiquitination-based cell cycle indicator) system can effectively label individual G1, S/G2/M, and G1/S-transition phase nuclei red, green and yellow, respectively, in living mammalian cells, and could therefore be useful to visualize the real-time cell cycle transitions in living murine heart. To establish a similar system for time-lapse imaging of murine heart, we first developed an ex vivo culture system, with the culture conditions determined in terms of sample state, serum concentration, and oxygen concentration. The optimal condition (slice culture, oxygen concentration 20%, serum concentration 10%) successfully mimicked physiological cardiomyocyte proliferation in vivo. Time-lapse imaging of cardiac slices from E11.5, E14.5, E18.5, and P1 Fucci-expressing transgenic mice revealed an elongated S/G2/M phase in cardiomyocytes during development. Our time-lapse imaging of murine heart revealed a gradual elongation of the S/G2/M phase during development in living cardiomyocytes.


Asunto(s)
Ciclo Celular/fisiología , Desarrollo Embrionario/fisiología , Miocitos Cardíacos/citología , Imagen de Lapso de Tiempo , Animales , Proliferación Celular , Embrión de Mamíferos , Femenino , Colorantes Fluorescentes , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente/métodos , Miocitos Cardíacos/fisiología , Embarazo , Técnicas de Cultivo de Tejidos , Ubiquitinación
13.
Development ; 138(3): 577-87, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21205801

RESUMEN

Chordates undergo a characteristic morphogenetic process during neurulation to form a dorsal hollow neural tube. Neurulation begins with the formation of the neural plate and ends when the left epidermis and right epidermis overlying the neural tube fuse to close the neural fold. During these processes, mitosis and the various morphogenetic movements need to be coordinated. In this study, we investigated the epidermal cell cycle in Ciona intestinalis embryos in vivo using a fluorescent ubiquitination-based cell cycle indicator (Fucci). Epidermal cells of Ciona undergo 11 divisions as the embryos progress from fertilization to the tadpole larval stage. We detected a long G2 phase between the tenth and eleventh cell divisions, during which fusion of the left and right epidermis occurred. Characteristic cell shape change and actin filament regulation were observed during the G2 phase. CDC25 is probably a key regulator of the cell cycle progression of epidermal cells. Artificially shortening this G2 phase by overexpressing CDC25 caused precocious cell division before or during neural tube closure, thereby disrupting the characteristic morphogenetic movement. Delaying the precocious cell division by prolonging the S phase with aphidicolin ameliorated the effects of CDC25. These results suggest that the long interphase during the eleventh epidermal cell cycle is required for neurulation.


Asunto(s)
Cordados/embriología , Ciona intestinalis/citología , Ciona intestinalis/embriología , Fase G2/fisiología , Mitosis/fisiología , Morfogénesis/fisiología , Neurulación/fisiología , Animales , Cordados/metabolismo , Ciona intestinalis/metabolismo , Fase G2/genética , Hibridación in Situ , Microscopía Confocal , Mitosis/genética , Morfogénesis/genética , Neurulación/genética
14.
Int Immunol ; 25(3): 145-56, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23042789

RESUMEN

The transfer of nuclei of fully differentiated cells into enucleated oocytes is a well-recognized method for the generation of embryonic stem (ES) cells. Here, we demonstrate that nuclear transferred ES (NT-ES) cells can be established with high efficiency using innate-like B lymphocytes as donor cells. We established two mouse lines carrying rearranged immunoglobulin heavy and light chains using NT-ES cells containing nuclei from peritoneal cavity B1 cells. Analysis of B1 clone lines revealed that the B1-cell generation critically depends on the interaction between antigen (possibly self-antigen) and surface immunoglobulin, while the B1-cell maintenance requires the peritoneal environment. The B1-cell expansion takes place in spleen, and is held in check by competitor B2 cells. The results indicate that the NT-ES method could replace the transgenic or knock-in mouse approaches currently used to study the biology of cells that undergo somatic rearrangements of their antigen receptor genes.


Asunto(s)
Linfocitos B/inmunología , Células Madre Embrionarias/inmunología , Técnicas de Transferencia Nuclear , Cavidad Peritoneal/citología , Animales , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula/genética , Reordenamiento Génico de Linfocito B , Inmunidad Innata/genética , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas kappa de Inmunoglobulina/genética , Cadenas lambda de Inmunoglobulina/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Receptores de Antígenos de Linfocitos B/genética
15.
Proc Natl Acad Sci U S A ; 107(27): 12192-7, 2010 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-20547847

RESUMEN

It has long been presumed that after leaving the germinal centers (GCs), memory B cells colonize the marginal zone or join the recirculating pool. Here we demonstrate the preferential localization of nitrophenol-chicken gamma-globulin-induced CD38(+)IgG1(+) memory B cells adjacent to contracted GCs in the spleen. The memory B cells in this region proliferated after secondary immunization, a response that was abolished by depletion of CD4(+) T cells. We also found that these IgG1(+) memory B cells could present antigen on their surface, and that this activity was required for their activation. These results implicate this peri-GC region as an important site for survival and reactivation of memory B cells.


Asunto(s)
Linfocitos B/inmunología , Centro Germinal/inmunología , Inmunoglobulina G/inmunología , Memoria Inmunológica/inmunología , ADP-Ribosil Ciclasa 1/inmunología , ADP-Ribosil Ciclasa 1/metabolismo , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Pollos , Citometría de Flujo , Centro Germinal/metabolismo , Inmunización , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Nitrofenoles/química , Fenilacetatos/química , Bazo/citología , Bazo/inmunología , Bazo/metabolismo , gammaglobulinas/química , gammaglobulinas/inmunología
16.
Biochem Biophys Res Commun ; 417(3): 1080-5, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22226970

RESUMEN

We have developed a multi-target cell tracking program TADOR, which we applied to a series of fluorescence images. TADOR is based on an active contour model that is modified in order to be free of the problem of locally optimal solutions, and thus is resistant to signal fluctuation and morphological changes. Due to adoption of backward tracing and addition of user-interactive correction functions, TADOR is used in an off-line and semi-automated mode, but enables precise tracking of cell division. By applying TADOR to the analysis of cultured cells whose nuclei had been fluorescently labeled, we tracked cell division and cell-cycle progression on coverslips over an extended period of time.


Asunto(s)
Ciclo Celular , División Celular , Proliferación Celular , Rastreo Celular/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Fluorescencia , Colorantes Fluorescentes/análisis , Células HeLa , Humanos
17.
Proc Natl Acad Sci U S A ; 106(49): 20812-7, 2009 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-19923430

RESUMEN

By exploiting the cell-cycle-dependent proteolysis of two ubiquitination oscillators, human Cdt1 and geminin, which are the direct substrates of SCF(Skp2) and APC(Cdh1) complexes, respectively, Fucci technique labels mammalian cell nuclei in G(1) and S/G(2)/M phases with different colors. Transgenic mice expressing these G(1) and S/G(2)/M markers offer a powerful means to investigate the coordination of the cell cycle with morphogenetic processes. We attempted to introduce these markers into zebrafish embryos to take advantage of their favorable optical properties. However, although the fundamental mechanisms for cell-cycle control appear to be well conserved among species, the G(1) marker based on the SCF(Skp2)-mediated degradation of human Cdt1 did not work in fish cells, probably because the marker was not ubiquitinated properly by a fish E3 ligase complex. We describe here the generation of a Fucci derivative using zebrafish homologs of Cdt1 and geminin, which provides sweeping views of cell proliferation in whole fish embryos. Remarkably, we discovered two anterior-to-posterior waves of cell-cycle transitions, G(1)/S and M/G(1), in the differentiating notochord. Our study demonstrates the effectiveness of using the Cul4(Ddb1)-mediated Cdt1 degradation pathway common to all metazoans for the development of a G(1) marker that works in the nonmammalian animal model.


Asunto(s)
Ciclo Celular , Embrión no Mamífero/citología , Desarrollo Embrionario , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Biomarcadores/metabolismo , Núcleo Celular , Colorantes Fluorescentes/metabolismo , Fase G1 , Mitosis , Datos de Secuencia Molecular , Notocorda/citología , Retina/citología , Retina/embriología , Fase S , Factores de Tiempo , Pez Cebra/genética
18.
Elife ; 112022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35578835

RESUMEN

Medullary thymic epithelial cells (mTECs) are critical for self-tolerance induction in T cells via promiscuous expression of tissue-specific antigens (TSAs), which are controlled by the transcriptional regulator, AIRE. Whereas AIRE-expressing (Aire+) mTECs undergo constant turnover in the adult thymus, mechanisms underlying differentiation of postnatal mTECs remain to be discovered. Integrative analysis of single-cell assays for transposase-accessible chromatin (scATAC-seq) and single-cell RNA sequencing (scRNA-seq) suggested the presence of proliferating mTECs with a specific chromatin structure, which express high levels of Aire and co-stimulatory molecules, CD80 (Aire+CD80hi). Proliferating Aire+CD80hi mTECs detected using Fucci technology express a minimal number of Aire-dependent TSAs and are converted into quiescent Aire+CD80hi mTECs expressing high levels of TSAs after a transit amplification. These data provide evidence for the existence of transit-amplifying Aire+mTEC precursors during the Aire+mTEC differentiation process of the postnatal thymus.


Asunto(s)
Cromatina , Análisis de la Célula Individual , Animales , Diferenciación Celular/genética , Cromatina/metabolismo , Células Epiteliales/metabolismo , Ratones , Ratones Endogámicos C57BL , Timo , Transposasas/metabolismo
19.
BMC Cell Biol ; 12: 2, 2011 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-21226962

RESUMEN

BACKGROUND: Cancer cell responses to chemotherapeutic agents vary, and this may reflect different defects in DNA repair, cell-cycle checkpoints, and apoptosis control. Cytometry analysis only quantifies dye-incorporation to examine DNA content and does not reflect the biological complexity of the cell cycle in drug discovery screens. RESULTS: Using population and time-lapse imaging analyses of cultured immortalized cells expressing a new version of the fluorescent cell-cycle indicator, Fucci (Fluorescent Ubiquitination-based Cell Cycle Indicator), we found great diversity in the cell-cycle alterations induced by two anticancer drugs. When treated with etoposide, an inhibitor of DNA topoisomerase II, HeLa and NMuMG cells halted at the G2/M checkpoint. HeLa cells remained there, but NMuMG cells then overrode the checkpoint and underwent nuclear mis-segregation or avoided the checkpoint and entered the endoreplication cycle in a drug concentration dependent manner. In contrast, an inhibitor of Cdk4 led to G1 arrest or endoreplication in NMuMG cells depending upon the initial cell-cycle phase of drug exposure. CONCLUSIONS: Drug-induced cell cycle modulation varied not only between different cell types or following treatment with different drugs, but also between cells treated with different concentrations of the same drug or following drug addition during different phases of the cell cycle. By combining cytometry analysis with the Fucci probe, we have developed a novel assay that fully integrates the complexity of cell cycle regulation into drug discovery screens. This assay system will represent a powerful drug-discovery tool for the development of the next generation of anti-cancer therapies.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Ciclo Celular/efectos de los fármacos , Etopósido/farmacología , Carbazoles/farmacología , Proteínas de Ciclo Celular/metabolismo , División Celular , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Proliferación Celular , Segregación Cromosómica , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Replicación del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/metabolismo , Fase G2 , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Fase S , Imagen de Lapso de Tiempo , Proteína Fluorescente Roja
20.
J Virol ; 84(2): 822-32, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19906922

RESUMEN

Fragments of double-stranded DNA (dsDNA) forming a right-handed helical structure (B-DNA) stimulate cells to produce type I interferons (IFNs). While an adaptor molecule, IFN-beta promoter stimulator 1 (IPS-1), mediates dsDNA-induced cellular signaling in human cells, the underlying molecular mechanism is not fully understood. Here, we demonstrate that the extrachromosomal histone H2B mediates innate antiviral immune responses in human cells. H2B physically interacts with IPS-1 through the association with a newly identified adaptor, CIAO (COOH-terminal importin 9-related adaptor organizing histone H2B and IPS-1), to transmit the cellular signaling for dsDNA but not immunostimulatory RNA. Extrachromosomal histone H2B was biologically crucial for cell-autonomous responses to protect against multiplication of DNA viruses but not an RNA virus. Thus, the present findings provide evidence indicating that the extrachromosomal histone H2B is engaged in the signaling pathway initiated by dsDNA to trigger antiviral innate immune responses.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antivirales/metabolismo , ADN/inmunología , Histonas/metabolismo , Inmunidad Innata/inmunología , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular , Chlorocebus aethiops , ADN/metabolismo , Virus ADN/fisiología , Regulación de la Expresión Génica , Células HeLa , Histonas/genética , Humanos , Interferón beta/metabolismo , Ratones , Células 3T3 NIH , Regiones Promotoras Genéticas , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA