Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Retina ; 44(9): 1619-1632, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39167583

RESUMEN

PURPOSE: To investigate changes to the vitreoretinal interface in uveitis with multimodal imaging including adaptive optics. METHODS: Four eyes (four patients) affected by fovea-attached (subtype 1A) or fovea-sparing epiretinal membranes (ERMs) on spectral-domain optical coherence tomography or visible internal limiting membrane (ILM) on infrared scanning laser ophthalmoscope (SLO) fundus imaging were recruited in this pilot study. The microstructure of the vitreoretinal interface was imaged using flood-illumination adaptive optics (FIAO), and the images were compared with the cross-sectional spectral-domain optical coherence tomography data. RESULTS: Adaptive optics images revealed multiple abnormalities of the vitreoretinal interface, such as deep linear striae in ERM, and hyperreflective microstructures at the location of ERMs and ILMs. The cone mosaic was imaged by FIAO and was found altered in the four eyes with ERMs or visible ILM. The same four eyes presented alteration of photopic 30 Hz flicker that was reduced in amplitude indicating cone inner retinal layer dysfunction. CONCLUSION: FIAO imaging can identify specific patterns associated with ERMs and ILMs. Correlating FIAO imaging of the vitreomacular interface with the structural alterations seen in FIAO at the level of the outer retinal structures can help understand the cause of significant macular dysfunction associated with ERM.


Asunto(s)
Membrana Epirretinal , Imagen Multimodal , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Masculino , Femenino , Persona de Mediana Edad , Membrana Epirretinal/diagnóstico , Proyectos Piloto , Oftalmoscopía/métodos , Cuerpo Vítreo/patología , Cuerpo Vítreo/diagnóstico por imagen , Uveítis/diagnóstico , Adulto , Agudeza Visual , Anciano , Estudios Transversales , Membrana Basal
2.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446225

RESUMEN

Thyrotropin-releasing hormone (TRH) is a tripeptide that regulates the neuroendocrine thyroid axis. Moreover, its widespread brain distribution has indicated that it is a relevant neuromodulator of behaviors such as feeding, arousal, anxiety, and locomotion. Importantly, it is also a neurotrophic peptide, and thus may halt the development of neurodegenerative diseases and improve mood-related disorders. Its neuroprotective actions on those pathologies and behaviors have been limited due to its poor intestinal and blood-brain barrier permeability, and because it is rapidly degraded by a serum enzyme. As new strategies such as TRH intranasal delivery emerge, a renewed interest in the peptide has arisen. TRH analogs have proven to be safe in animals and humans, while not inducing alterations in thyroid hormones' levels. In this review, we integrate research from different approaches, aiming to demonstrate the therapeutic effects of TRH, and to summarize new efforts to prolong and facilitate the peptide's actions to improve symptoms and the progression of several pathologies.


Asunto(s)
Encéfalo , Hormona Liberadora de Tirotropina , Animales , Humanos , Hormona Liberadora de Tirotropina/uso terapéutico , Hormona Liberadora de Tirotropina/metabolismo , Encéfalo/metabolismo , Glándula Tiroides/metabolismo , Péptidos/metabolismo , Hormonas Tiroideas/metabolismo
3.
J Integr Neurosci ; 21(2): 47, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35364635

RESUMEN

Thyrotropin-releasing hormone (TRH) and its receptors are expressed in the hypothalamus and limbic regions. Brain thyrotropin-releasing hormone actions are exerted directly through its receptors and indirectly by modulating the effects of neurotransmitters such as glutamate, gamma-aminobutyric acid, acetylcholine, and dopamine. The thyrotropin-releasing hormone has been implicated in eating and mood regulation. We integrate studies that analyze the role of limbic thyrotropin-releasing hormone on displaying depressive- and anxiety-like behaviors and anorexia or hyperphagia. Since the decade of 1970s, different efforts have been made to identify some of the thyrotropin-releasing hormone effects and its analogs in feeding regulation or to ameliorate symptoms in patients diagnosed with mood disorders, and to correlate anxious or depressive parameters with thyrotropin-releasing hormone levels in the cerebrospinal fluid or its expression in postmortem brain areas of affected patients. Pharmacological studies where the thyrotropin-releasing hormone is administered to animals by different routes and to distinct brain areas have elucidated its actions in behavioral changes of mood and feeding parameters. In addition, a variety of animal models of depression, anxiety, or anorexia and hyperphagia has suggested the association between the hypothalamic and limbic TRHergic system and the regulation of mood and feeding alterations. Different approaches employ the administration of anti-depressant, anxiolytic or anorectic agents to animals and describe changes in thyrotropin-releasing hormone content or expression in hypothalamic or limbic regions. The different effects on mood that result from modulating thyrotropin-releasing hormone expression may be beneficial to treat patients diagnosed with eating disorders.


Asunto(s)
Hipotálamo , Hormona Liberadora de Tirotropina , Animales , Ansiedad , Encéfalo/metabolismo , Humanos , Hipotálamo/metabolismo , Hormona Liberadora de Tirotropina/metabolismo , Hormona Liberadora de Tirotropina/farmacología
4.
Opt Lett ; 46(5): 1085-1088, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649663

RESUMEN

Off-axis detection methods in adaptive optics (AO) ophthalmoscopy can enhance image contrast of translucent retinal structures such as cone inner segments and retinal ganglion cells. Here, we propose a 2D optical model showing that the phase contrast produced by these methods depends on the offset orientation. While one axis provides an asymmetric light distribution, hence high phase contrast, the perpendicular axis provides a symmetric one, thus substantially lower contrast. We support this model with in vivo human data acquired with a multi-offset AO scanning light ophthalmoscope. Then, using this finding, we provide a post-processing method, named spatial-frequency-based image reconstruction, to optimally combine images from different off-axis detector orientations, significantly increasing the structural cellular contrast of in vivo human retinal neurons such as cone inner segment, putative rods, and retinal ganglion cells.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Oftalmoscopía , Relación Señal-Ruido , Humanos , Retina/diagnóstico por imagen , Factores de Tiempo
5.
Nutr Neurosci ; 24(7): 554-563, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31438781

RESUMEN

Emotional stress, through elevating corticosterone (CORT) levels may reduce feeding in rodents however when offered palatable food, stressed animals ingest more food compared to non-stressed controls. Nucleus accumbens (NAc) is part of the mesocorticolimbic system and participates in processing rewarding characteristics of food modulating palatable food intake, mainly when glucocorticoids are elevated. A possible mediator of CORT effects is accumbal thyrotropin-releasing hormone (TRH), which reduces chow intake in rats when administered into the NAc. We aimed to study the TRH role in hedonic feeding in stressed rats. For 14 days, animals with ad libitum access to chow or chow plus chocolate milk were either group-housed or singly-housed to induce stress. Rats with access to chocolate milk showed hyperphagia and decreased accumbal TRH mRNA levels, which were potentiated by stress. Results suggest that TRH downregulation was permissive of the increased palatable food intake. TRH injections into NAc of singly-housed animals with palatable food access reduced their food intake and increased serum CORT levels. The accumbal injections of a glucocorticoid receptor antagonist (mifepristone) in stressed rats with palatable food access, reduced only palatable food intake and increased accumbal TRH expression and serum CORT levels. This modulation of TRH mRNA when CORT signaling is modified suggests that accumbal TRH is downstream of glucocorticoids activity, which specifically increase palatable food intake. Our results strengthen the TRH involvement in regulating emotional aspects of hedonic feeding in stressed animals. Finding new therapies directed towards increasing TRHergic activity in NAc may be protective against overeating.


Asunto(s)
Ingestión de Alimentos , Núcleo Accumbens/metabolismo , Estrés Psicológico/metabolismo , Hormona Liberadora de Tirotropina/metabolismo , Animales , Corticosterona/sangre , Regulación hacia Abajo , Masculino , Ratas Wistar , Estrés Psicológico/sangre
6.
Appl Opt ; 60(31): 9951-9956, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34807185

RESUMEN

Effective and accurate in vivo diagnosis of retinal pathologies requires high performance imaging devices, combining a large field of view and the ability to discriminate the ballistic signal from the diffuse background in order to provide a highly contrasted image of the retinal structures. Here, we have implemented the partial-field illumination ophthalmoscope, a patterned illumination modality, integrated to a high pixel rate adaptive optics full-field microscope. This non-invasive technique enables us to mitigate the low signal-to-noise ratio, intrinsic of full-field ophthalmoscopes, by partially illuminating the retina with complementary patterns to reconstruct a wide-field image. This new, to the best of our knowledge, modality provides an image contrast spanning from the full-field to the confocal contrast, depending on the pattern size. As a result, it offers various trade-offs in terms of contrast and acquisition speed, guiding the users towards the most efficient system for a particular clinical application.


Asunto(s)
Sensibilidad de Contraste/fisiología , Iluminación , Oftalmoscopios , Fotograbar/instrumentación , Retina/diagnóstico por imagen , Diseño de Equipo , Humanos , Óptica y Fotónica , Relación Señal-Ruido
7.
Opt Lett ; 44(9): 2208-2211, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042185

RESUMEN

In this Letter, we propose a way to better understand the impact of dynamic ocular aberrations in the axial resolution of nonconfocal adaptive optics (AO) ophthalmoscopes via a simulation of the 3D PSF in the retina for various AO-loop rates. We then use optical incoherence tomography, a method enabling the generation of tomographic retinal cross sections in incoherent imaging systems, to evaluate the benefits of a fast AO-loop rate on axial resolution and, consequently, on AO-corrected retinal image quality. We used the PARIS AO flood-illumination ophthalmoscope for this study, where retinal images from different focal planes at an AO-loop rate of 10 and 50 Hz were acquired.

8.
Appl Opt ; 57(20): 5635-5642, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-30118075

RESUMEN

The design and performance of an adaptive optics flood illumination ophthalmoscope (AO-FIO) platform, based on eye motion and dynamic aberrations experimental analysis, are described. The system incorporates a custom-built real-time controller, enabling up to 70 Hz loop rate without jitter, and an AO-corrected illumination capable of projecting high-resolution features in the retina. Wide-field (2.7°×5.4°) and distortionless images from vessel walls, capillaries, and the lamina cribrosa are obtained with an enhanced contrast and signal-to-noise ratio, thanks to careful control of AO parameters. The high spatial and temporal resolution (image acquisition up to 200 Hz) performance achieved by this platform enables the visualization of vessel deformation and blood flow. This system opens up the prospect of a return to favor of flood illumination adaptive optics systems provided that its high pixel rate and structured illumination capabilities are exploited.


Asunto(s)
Diseño de Equipo , Luz , Oftalmoscopios , Óptica y Fotónica , Flujo Sanguíneo Regional/fisiología , Vasos Retinianos/anatomía & histología , Femenino , Humanos , Masculino , Vasos Retinianos/fisiología
9.
Brain Behav Immun ; 62: 53-63, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28179107

RESUMEN

Activation of the hypothalamo-pituitary-adrenal (HPA) axis by inflammatory stressors (e.g., bacterial lipopolysaccharide) is thought to involve vascular transduction of circulating cytokines, with perivascular macrophages (PVMs) along with endothelia, effecting activation of HPA control circuitry via inducible (cyclooxygenase-2- or COX-2-dependent) prostaglandin synthesis. To test the stressor-specificity of this mechanism, we examined whether ablation of PVMs or pharmacologic blockade of COX activity affected HPA responses to a representative emotional stressor, restraint. Exposing rats to a single 30min acute restraint episode provoked increased plasma levels of at least one proinflammatory cytokine, IL-6, microglial activation and multiple indices of cerebrovascular activation, including COX-2 expression and increased brain prostaglandin E2 levels at 0-2h after stress. Pretreatment with the nonselective COX inhibitor, indomethacin, either icv (10µg in 5µl) or iv (1mg/kg) significantly reduced restraint-induced Fos expression in the paraventricular hypothalamic nucleus (PVH) by 45%, relative to vehicle-injected controls. A 75% reduction of the PVH activational response was seen in rats exposed to acute restraint 5-7days after ablation of brain PVMs by icv injection of liposomes encapsulating the bisphosphonate drug, clodronate. Basal plasma levels of ACTH and corticosterone were not altered in clodronate liposome-injected rats, but the peak magnitude of restraint-induced HPA secretory responses was substantially reduced, relative to animals pretreated with saline-filled liposomes. These findings support an unexpectedly prominent role for inducible prostaglandin synthesis by PVMs in HPA responses to acute restraint, a prototypic emotional stressor.


Asunto(s)
Encéfalo/metabolismo , Inflamación/metabolismo , Estrés Fisiológico/fisiología , Estrés Psicológico/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Inhibidores de la Ciclooxigenasa/farmacología , Emociones/fisiología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiopatología , Indometacina/farmacología , Masculino , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/fisiopatología , Ratas , Ratas Sprague-Dawley , Restricción Física , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Estrés Psicológico/fisiopatología
10.
Appl Opt ; 56(9): D66-D71, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28375373

RESUMEN

Our eyes are constantly in motion, even during "steady" fixation. In ophthalmic systems equipped with wavefront technology, both eye and head motion potentially degrade its performance and/or increase the cost and complexity, as they induce a movement of the entrance optical pupil of the system. Here, we characterize the pupil motion in an aberrometry setting, using a custom, high-speed pupil tracker (478 Hz), and draw conclusions on design considerations of future ophthalmic systems. We also demonstrate the feasibility of tracking such motion directly with a custom-built Hartmann-Shack sensor (236 Hz) using a method that offers certain benefits over previously suggested approaches, thereby paving the way to an efficient and cost-effective approach.

11.
Diagnostics (Basel) ; 14(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38611681

RESUMEN

The Retinal Pigment Epithelium (RPE) plays a prominent role in diseases such as age-related macular degeneration, but imaging individual RPE cells is challenging due to their high absorption and low autofluorescence emission. The RPE lies beneath the highly reflective photoreceptor layer (PR) and contains absorptive pigments, preventing direct backscattered light detection when the PR layer is intact. Here, we used near-infrared autofluorescence adaptive optics scanning laser ophthalmoscopy (NIRAF AOSLO) and transscleral flood imaging (TFI) in the same healthy eyes to cross-validate these approaches. Both methods revealed a consistent RPE mosaic pattern and appeared to reflect a distribution of fluorophores consistent with findings from histological studies. Interestingly, even in apparently healthy RPE, we observed dynamic changes over months, suggesting ongoing cellular activity or alterations in fluorophore distribution. These findings emphasize the value of NIRAF AOSLO and TFI in understanding RPE morphology and dynamics.

12.
Ophthalmol Sci ; 4(5): 100475, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881602

RESUMEN

Purpose: Putative microglia were recently detected using adaptive optics ophthalmoscopy in healthy eyes. Here we evaluate the use of nonconfocal adaptive optics scanning light ophthalmoscopy (AOSLO) for quantifying the morphology and motility of presumed microglia and other immune cells in eyes with retinal inflammation from uveitis and healthy eyes. Design: Observational exploratory study. Participants: Twelve participants were imaged, including 8 healthy participants and 4 posterior uveitis patients recruited from the clinic of 1 of the authors (M.H.E.). Methods: The Pittsburgh AOSLO imaging system was used with a custom-designed 7-fiber optical fiber bundle for simultaneous confocal and nonconfocal multioffset detection. The inner retina was imaged at several locations at multiple timepoints in healthy participants and uveitis patients to generate time-lapse images. Main Outcome Measures: Microglia and macrophages were manually segmented from nonconfocal AOSLO images, and their morphological characteristics quantified (including soma size, diameter, and circularity). Cell soma motion was quantified across time for periods of up to 30 minutes and their speeds were calculated by measuring their displacement over time. Results: A spectrum of cell morphologies was detected in healthy eyes from circular amoeboid cells to elongated cells with visible processes, resembling activated and ramified microglia, respectively. Average soma diameter was 16.1 ± 0.9 µm. Cell movement was slow in healthy eyes (0.02 µm/sec on average), but macrophage-like cells moved rapidly in some uveitis patients (up to 3 µm/sec). In an eye with infectious uveitis, many macrophage-like cells were detected; during treatment their quantity and motility decreased as vision improved. Conclusions: In vivo adaptive optics ophthalmoscopy offers promise as a potentially powerful tool for detecting and monitoring inflammation and response to treatment at a cellular level in the living eye. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

13.
Nutrients ; 15(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36904162

RESUMEN

Dietary regimens that are focused on diminishing total caloric intake and restricting palatable food ingestion are the most common strategies for weight control. However, restrictive diet therapies have low adherence rates in obese patients, particularly in stressed individuals. Moreover, food restriction downregulates the hypothalamic-pituitary-thyroid axis (HPT) function, hindering weight loss. Intermittent fasting (IF) has emerged as an option to treat obesity. We compared the effects of IF to an all-day feeding schedule on palatable diet (PD)-stress (S)-induced hyperphagia, HPT axis function, accumbal thyrotropin-releasing hormone (TRH), and dopamine D2 receptor expression in association with adipocyte size and PPARƔ coactivator 1α (PGC1α) and uncoupling protein 1 (UCP1) expression in stressed vs. non-stressed rats. After 5 weeks, S-PD rats showed an increased energy intake and adipocyte size, fewer beige cells, and HPT axis deceleration-associated low PGC1α and UCP1 expression, as well as decreased accumbal TRH and D2 expression. Interestingly, IF reversed those parameters to control values and increased the number of beige adipocytes, UCP1, and PGC1α mRNAs, which may favor a greater energy expenditure and a reduced body weight, even in stressed rats. Our results showed that IF modulated the limbic dopaminergic and TRHergic systems that regulate feeding and HPT axis function, which controls the metabolic rate, supporting this regimen as a suitable non-pharmacologic strategy to treat obesity, even in stressed individuals.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Glándula Tiroides , Ratas , Animales , Glándula Tiroides/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Ayuno Intermitente , Hormona Liberadora de Tirotropina , Peso Corporal , Obesidad/metabolismo , Ingestión de Alimentos
14.
Am J Ophthalmol Case Rep ; 28: 101741, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36345414

RESUMEN

Purpose: To test the hypothesis that hyperreflective foci in central serous chorioretinopathy (CSCR) are autofluorescent and may represent macrophages that have engulfed outer retinal fluorophores from the retinal pigment epithelium (RPE) and photoreceptors. Methods: Enrolled subjects underwent spectral domain and swept-source optical coherence tomography, adaptive optics flood-illumination, and adaptive optics scanning laser ophthalmoscopy (AOSLO), including near-infrared autofluorescence (AO-IRAF). For the AO-IRAF imaging, retinal fluorophores were excited using 795 nm light and collected in an emission band from 814 to 850 nm. Results: In 2 of 3 eyes, a hyperautofluorescent signal was detected with an elliptical shape and punctate, granular aspects surrounded by a hypoautofluorescent halo. The size of these structures in the active case was measured to be 17 ± 4 µm in diameter, with at least 45 individual hyperautofluorescent foci identified from the AO-IRAF montage in the active stage of patient 2. In the asymptomatic case there were fewer structures visible (∼10) and their size was smaller (11 ± 4 µm). These hyper-AF foci were colocalized with hyperreflective foci on OCT and visible in simultaneously acquired confocal AOSLO images in active stage. The hyperautofluorescent foci in the patient with active CSCR disappeared coincident with clinical resolution. Conclusion and importance: We show here the first AO-IRAF images from patients with CSCR, demonstrating hyper-autofluorescent punctate foci, colocalized with hyper-reflective foci on confocal AOSLO images and in OCT. The autofluorescence of these foci may be driven by the accumulation of photoreceptor and RPE fluorophores within macrophages during the active stage of the disease.

15.
Biomed Opt Express ; 13(1): 117-132, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35154858

RESUMEN

Previous work has shown that multi-offset detection in adaptive optics scanning laser ophthalmoscopy (AOSLO) can be used to image transparent cells such as retinal ganglion cells (RGCs) in monkeys and humans. Though imaging in anesthetized monkeys with high light levels produced high contrast images of RGCs, images from humans failed to reach the same contrast due to several drawbacks in the previous dual-wavelength multi-offset approach. Our aim here was to design and build a multi-offset detection pattern for humans at safe light levels that could reveal transparent cells in the retinal ganglion cell layer with a contrast and acquisition time approaching results only previously obtained in monkeys. Here, we present a new single-wavelength solution that allows for increased light power and eliminates problematic chromatic aberrations. Then, we demonstrate that a radial multi-offset detection pattern with an offset distance of 8-10 Airy Disk Diameter (ADD) is optimal to detect photons multiply scattered in all directions from weakly reflective retinal cells thereby enhancing their contrast. This new setup and image processing pipeline led to improved imaging of inner retinal cells, including the first images of microglia with multi-offset imaging in AOSLO.

16.
Biomed Opt Express ; 12(4): 2353-2372, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33996234

RESUMEN

Retinal image-based eye motion measurement from scanned ophthalmic imaging systems, such as scanning laser ophthalmoscopy, has allowed for precise real-time eye tracking at sub-micron resolution. However, the constraints of real-time tracking result in a high error tolerance that is detrimental for some eye motion measurement and imaging applications. We show here that eye motion can be extracted from image sequences when these constraints are lifted, and all data is available at the time of registration. Our approach identifies and discards distorted frames, detects coarse motion to generate a synthetic reference frame and then uses it for fine scale motion tracking with improved sensitivity over a larger area. We demonstrate its application here to tracking scanning laser ophthalmoscopy (TSLO) and adaptive optics scanning light ophthalmoscopy (AOSLO), and show that it can successfully capture most of the eye motion across each image sequence, leaving only between 0.1-3.4% of non-blink frames untracked, while simultaneously minimizing image distortions induced from eye motion. These improvements will facilitate precise measurement of fixational eye movements (FEMs) in TSLO and longitudinal tracking of individual cells in AOSLO.

17.
Reprod Health Matters ; 18(36): 118-26, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21111356

RESUMEN

During a highly contested process, abortion was partially decriminalised in Colombia in 2006 by the Constitutional Court: when the pregnancy threatens a woman's life or health, in cases of severe fetal malformations incompatible with life, and in cases of rape, incest or unwanted insemination. However, Colombian women still face obstacles to accessing abortion services. This is illustrated by 36 cases of women who in 2006-08 were denied the right to a lawful termination of pregnancy, or had unjustified obstacles put in their path which delayed the termination, which are analysed in this article. We argue that the obstacles resulted from fundamental disagreements about abortion and misunderstandings regarding the ethical, legal and medical requirements arising from the Court's decision. In order to avoid obstacles such as demands for a judge's authorisation, institutional claims of conscientious objection, rejection of a claim of rape, or refusal of health insurance coverage for a legal termination, which constitute discrimination against women, three main strategies are suggested: public ownership of the Court's decision by all Colombian citizens, a professional approach by those involved in the provision of services in line with the law, and monitoring of its implementation by governmental and non-governmental organisations.


Asunto(s)
Aborto Inducido/legislación & jurisprudencia , Crimen/legislación & jurisprudencia , Accesibilidad a los Servicios de Salud/legislación & jurisprudencia , Aborto Legal/estadística & datos numéricos , Adolescente , Adulto , Niño , Colombia , Femenino , Derechos Humanos/legislación & jurisprudencia , Humanos , Embarazo , Adulto Joven
18.
Biomed Opt Express ; 11(8): 4069-4084, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32923029

RESUMEN

We present Optical Incoherence Tomography (OIT): a completely digital method to generate tomographic retinal cross-sections from en-face through-focus image stacks acquired by non-interferometric imaging systems, such as en-face adaptive optics (AO)-ophthalmoscopes. We demonstrate that OIT can be applied to different imaging modalities using back-scattered light, including systems without inherent optical sectioning and, for the first time, multiply-scattered light, revealing a distinctive cross-sectional view of the retina. The axial dimension of OIT cross-sections is given in terms of focus position rather than optical path, as in OCT. We explore this property to guide focus position in cases where the user is "blind" focusing, allowing precise plane selection for en-face imaging of retinal pigment epithelium, the vascular plexuses and translucent retinal neurons, such as photoreceptor inner segments and retinal ganglion cells, using respectively autofluorescence, motion contrast and split detection techniques.

19.
Biomed Opt Express ; 10(6): 2730-2743, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31259047

RESUMEN

Image-based angiography is a well-adapted technique to characterize vasculature, and has been used in retinal neurovascular studies. Because the microvasculature is of particular interest, being the site of exchange between blood and tissue, a high spatio-temporal resolution is required, implying the use of adaptive optics ophthalmoscopes with a high frame rate. Creating the opportunity for decoupled stimulation and imaging of the retina makes the use of near infrared (NIR) imaging light desirable, while the need for a large field of view and a lack of distortion implies the use of a flood illumination-based setup. However, flood-illumination NIR video sequences of erythrocytes, or red blood cells (RBC), have a limited contrast compared to scanning systems and visible light. As a result, they cannot be processed via existing image-based angiography methods. We have therefore developed a new computational method relying on a spatio-temporal filtering of the sequence to isolate blood flow from noise in low-contrast sequences. Applying this computational approach enabled us to perform angiography with an adaptive optics flood illumination ophthalmoscope (AO-FIO) using NIR light, both in bright-field and dark-field modalities. Finally, we demonstrate the capabilities of our system to differentiate blood flow velocity on a retinal capillary network in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA