Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Intervalo de año de publicación
1.
Stem Cells ; 41(9): 862-876, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37317792

RESUMEN

Numerous intrinsic factors regulate mesenchymal progenitor commitment to a specific cell fate, such as osteogenic or adipogenic lineages. Identification and modulation of novel intrinsic regulatory factors represent an opportunity to harness the regenerative potential of mesenchymal progenitors. In the present study, the transcription factor (TF) ZIC1 was identified to be differentially expressed among adipose compared with skeletal-derived mesenchymal progenitor cells. We observed that ZIC1 overexpression in human mesenchymal progenitors promotes osteogenesis and prevents adipogenesis. ZIC1 knockdown demonstrated the converse effects on cell differentiation. ZIC1 misexpression was associated with altered Hedgehog signaling, and the Hedgehog antagonist cyclopamine reversed the osteo/adipogenic differentiation alterations associated with ZIC1 overexpression. Finally, human mesenchymal progenitor cells with or without ZIC1 overexpression were implanted in an ossicle assay in NOD-SCID gamma mice. ZIC1 overexpression led to significantly increased ossicle formation in comparison to the control, as assessed by radiographic and histologic measures. Together, these data suggest that ZIC1 represents a TF at the center of osteo/adipogenic cell fate determinations-findings that have relevance in the fields of stem cell biology and therapeutic regenerative medicine.


Asunto(s)
Adipogénesis , Células Madre Mesenquimatosas , Animales , Ratones , Humanos , Adipogénesis/genética , Proteínas Hedgehog , Osteogénesis/fisiología , Ratones Endogámicos NOD , Ratones SCID , Diferenciación Celular , Factores de Transcripción/genética
2.
Chemistry ; : e202402130, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356247

RESUMEN

Systems chemistry aims to develop molecular systems that display emerging properties arising from their network and absent in their individual constituents. Employing reversible chemistry under thermodynamic control represents a valuable tool for generating dynamic combinatorial libraries of interconverting molecules, which may exhibit intriguing collective behaviour. A simple dynamic combinatorial library was prepared using dithioacetal / thiol / disulfide exchanges. Because of the relative reactivities of these reversible reactions, the library constitutes a two-layer dynamic system with one layer active in an acid medium (thiol/dithioacetal exchange) and one layer active in a basic medium (thiol/disulfide exchange). This property enables the system to respond to momentary changes in acidity of the medium by activating different network regions, channeling some building blocks from one layer to another through shared thiol reagents (nodes). This momentaneous change in wiring affects the final steady state composition of the library, measured the next day, even though the event that caused it vanishes without leaving any residue. Therefore, the final composition of this dynamic system provides information about this transient past perturbation in the environment such as: when it occurred, how long it was, or how intense it was.

3.
Nanotechnology ; 35(50)2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39312911

RESUMEN

Machine learning is playing a crucial role in optimizing material synthesis, particularly in scenarios where several parameters related to growth exhibit different and significant outcomes. An example of such complexity is the growth of atomically thin semiconductors through chemical vapor deposition (CVD), where multiple parameters can influence the thermodynamics and reaction kinetics involved in the synthesis. Herein, we performed a set of orthogonal experiments, varying the key parameters such as temperature, carries gas flux and precursor position to identify the optimal conditions for maximizing covered area and the size of rhenium disulfide (ReS2) crystals. The experimental results were used to establish correlations among the three thermodynamic variables through an artificial neural network. Contour plots were then generated to visualize the impact on the coverage and flake size of the crystals. This study demonstrates the capability of machine learning to enhance the potential of CVD-growth for the integration of 2D semiconductors like ReS2at larger scales.

4.
Stem Cells ; 39(11): 1427-1434, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34252260

RESUMEN

Mesenchymal progenitor cells are broadly distributed across perivascular niches-an observation conserved between species. One common histologic zone with a high frequency of mesenchymal progenitor cells within mammalian tissues is the tunica adventitia, the outer layer of blood vessel walls populated by cells with a fibroblastic morphology. The diversity and functions of (re)generative cells present in this outermost perivascular niche are under intense investigation; we have reviewed herein our current knowledge of adventitial cell potential with a somewhat narrow focus on bone formation. Antigens of interest to functionally segregate adventicytes are discussed, including CD10, CD107a, aldehyde dehydrogenase isoforms, and CD140a, among others. Purified adventicytes (such as CD10+ , CD107alow , and CD140a+ cells) have stronger osteogenic potential and promote bone formation in vivo. Recent bone tissue engineering applications of adventitial cells are also presented. A better understanding of perivascular progenitor cell subsets may represent a beneficial advance for future efforts in tissue repair and bioengineering.


Asunto(s)
Células Madre Mesenquimatosas , Pericitos , Animales , Diferenciación Celular , Mamíferos , Osteogénesis , Ingeniería de Tejidos , Cicatrización de Heridas
5.
Appl Microbiol Biotechnol ; 104(20): 8705-8718, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32910267

RESUMEN

Plant waxes are interesting substitutes of fossil-derived compounds; however, their limited sources and narrow structural diversity prompted the development of microbial platforms to produce esters with novel chemical structures and properties. One successful strategy was the heterologous expression of the mycocerosic polyketide synthase-based biosynthetic pathway (MAS-PKS, PapA5 and FadD28 enzymes) from Mycobacterium tuberculosis in Escherichia coli. This recombinant strain has the ability to produce a broad spectrum of multimethyl-branched long-chain esters (MBE) with novel chemical structures and high oxidation stability. However, one limitation of this microbial platform was the low yields obtained for MBE derived of short-chain alcohols. In an attempt to improve the titers of the short-chain alcohol-derived MBE, we focused on the PapA5 acyltransferase-enzyme that catalyzes the ester formation reaction. Specific amino acid residues located in the two-substrate recognition channels of this enzyme were identified, rationally mutated, and the corresponding mutants characterized both in vivo and in vitro. The phenylalanine located at 331 position in PapA5 (F331) was found to be a key residue that when substituted by other bulky and aromatic or bulky and polar amino acid residues (F331W, F331Y or F331H), gave rise to PapA5 mutants with improved bioconversion efficiency; showing in average, 2.5 higher yields of short-chain alcohol-derived MBE compared with the wild-type enzyme. Furthermore, two alternative pathways for synthetizing ethanol were engineered into the MBE producer microorganism, allowing de novo production of ethanol-derived MBE at levels comparable with those obtained by the external supply of this alcohol. KEY POINTS: • Mutation in channel 2 changes PapA5 acyltransferase bioconversion efficiency. • Improved production of short-chain alcohol derived multimethyl-branched esters. • Establishing ethanologenic pathways for de novo production of ethanol derived MBE. • Characterization of a novel phenylethanol-derived MBE.


Asunto(s)
Aciltransferasas , Mycobacterium tuberculosis , Aciltransferasas/genética , Escherichia coli/genética , Ésteres , Etanol
6.
J Proteome Res ; 17(11): 3877-3888, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30260228

RESUMEN

A protocol for harvesting and extracting extracellular metabolites from an in vitro model of human renal cell lines was developed to profile the exometabolome by means of a discovery-based metabolomics approach using ultraperformance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. Metabolic footprints provided by conditioned media (CM) samples ( n = 66) of two clear cell Renal Cell Carcinoma (ccRCC) cell lines with different genetic backgrounds and a nontumor renal cell line, were compared with the human serum metabolic profile of a pilot cohort ( n = 10) comprised of stage IV ccRCC patients and healthy individuals. Using a cross-validated orthogonal projection to latent structures-discriminant analysis model, a panel of 21 discriminant features selected by iterative multivariate classification, allowed differentiating control from tumor cell lines with 100% specificity, sensitivity, and accuracy. Isoleucine/leucine, phenylalanine, N-lactoyl-leucine, and N-acetyl-phenylalanine, and cysteinegluthatione disulfide (CYSSG) were identified by chemical standards, and hydroxyprolyl-valine was identified with MS and MS/MS experiments. A subset of 9 discriminant features, including the identified metabolites except for CYSSG, produced a fingerprint of classification value that enabled discerning ccRCC patients from healthy individuals. To our knowledge, this is the first time that N-lactoyl-leucine is associated with ccRCC. Results from this study provide a proof of concept that CM can be used as a serum proxy to obtain disease-related metabolic signatures.


Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma de Células Renales/sangre , Neoplasias Renales/sangre , Leucina/sangre , Metaboloma , Adulto , Anciano , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/patología , Estudios de Casos y Controles , Línea Celular Tumoral , Cromatografía Liquida , Cisteína/análogos & derivados , Cisteína/sangre , Análisis Discriminante , Femenino , Glutatión/análogos & derivados , Glutatión/sangre , Células HEK293 , Humanos , Neoplasias Renales/diagnóstico , Neoplasias Renales/patología , Leucina/análogos & derivados , Masculino , Metabolómica/métodos , Persona de Mediana Edad , Estadificación de Neoplasias , Fenilalanina/análogos & derivados , Fenilalanina/sangre , Proyectos Piloto , Espectrometría de Masas en Tándem
7.
Phytochem Anal ; 26(6): 404-12, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26102595

RESUMEN

INTRODUCTION: The prevailing treatment for Alzheimer's disease is the use of acetylcholinesterase (AChE) inhibitors. Natural extracts are the principal source of AChE's inhibitors. However, their chemical complexity demands for simple, selective and rapid assays. OBJECTIVE: To develop a strategy for identification of AChE inhibitors present in mixtures employing high resolution mass spectrometry (HRMS) and thin layer chromatography (TLC)-biological staining. METHODOLOGY: The strategy uses an autographic assay based on the α-naphthyl acetate - fast blue B system for the detection of AChE activity. The immobilisation of AChE in agar allowed the extraction of the compounds for analysis by HRMS. Three TLC experiments employing different solvent systems were used in parallel and the mass spectra of the compounds extracted from the inhibition halos, were compared. The analysis was performed under MatLab environment. RESULTS: The strategy was used to detect the presence of physostigmine in an extract of Brassica rapa L. spiked with the inhibitor. Similarly, caffeine was straightforwardly spotted as responsible for the inhibitory properties of an extract of Ilex paraguariensis Saint-Hilaire. Comparison of the HRMS profiles lead to the facile identification of the [M+H](+) and [M+Na](+) of the compounds responsible for the inhibition. CONCLUSION: The proposed methodology, coupling TLC-AChE autography-HRMS, illustrates the feasibility of assigning molecular formulas of active compounds present in complex mixtures directly from autography. The new AChE agar-immobilised assay presented a more homogenous colour and a better definition than direct spraying methods, reducing the cost of the assay and improving its sensitivity.


Asunto(s)
Autorradiografía/métodos , Productos Biológicos/química , Inhibidores de la Colinesterasa/análisis , Cromatografía en Capa Delgada/métodos , Ilex paraguariensis/química , Espectrometría de Masas/métodos , Autorradiografía/economía , Brassica rapa/química , Cafeína/aislamiento & purificación , Cromatografía en Capa Delgada/economía , Descubrimiento de Drogas , Espectrometría de Masas/economía , Fisostigmina/análisis
8.
J Biol Chem ; 288(31): 22346-58, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23782700

RESUMEN

The Salmonella enterica serovar Typhimurium PhoP/PhoQ system has largely been studied as a paradigmatic two-component regulatory system not only to dissect structural and functional aspects of signal transduction in bacteria but also to gain knowledge about the versatile devices that have evolved allowing a pathogenic bacterium to adjust to or counteract environmental stressful conditions along its life cycle. Mg(2+) limitation, acidic pH, and the presence of cationic antimicrobial peptides have been identified as cues that the sensor protein PhoQ can monitor to reprogram Salmonella gene expression to cope with extra- or intracellular challenging conditions. In this work, we show for the first time that long chain unsaturated free fatty acids (LCUFAs) present in Salmonella growth medium are signals specifically detected by PhoQ. We demonstrate that LCUFAs inhibit PhoQ autokinase activity, turning off the expression of the PhoP-dependent regulon. We also show that LCUFAs exert their action independently of their cellular uptake and metabolic utilization by means of the ß-oxidative pathway. Our findings put forth the complexity of input signals that can converge to finely tune the activity of the PhoP/PhoQ system. In addition, they provide a new potential biochemical platform for the development of antibacterial strategies to fight against Salmonella infections.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Salmonella enterica/metabolismo , Transducción de Señal , Cromatografía en Capa Delgada , Espectrometría de Masas , Resonancia Magnética Nuclear Biomolecular , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
Surg Endosc ; 28(3): 777-82, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24122245

RESUMEN

BACKGROUND: Esophagectomy has been the standard treatment for Barrett's esophagus (BE) with high-grade dysplasia (HGD) and intramucosal cancer (IMC). Recently, endoscopic mucosal resection (EMR) and radiofrequency ablation (RFA) have become the preferred treatment for these patients in some centers. We report a single institution series of patients undergoing endoscopic management of HGD and IMC. METHODS: Nineteen patients underwent endoscopic treatment for HGD or IMC between 2009 and 2012. The primary outcome measure was progression of BE necessitating esophagectomy. Secondary outcomes included complete eradication of intestinal metaplasia (CE-IM), complete eradication of dysplasia (CE-D), recurrence or progression of BE or dysplasia, and complications. Patients were followed for a median follow-up interval of 19 months following completion of RFA treatment. RESULTS: Three patients (16 %) had a presenting diagnosis of IMC, and 16 (84 %) were treated for HGD. Twelve (63 %) had long-segment BE; the median length of BE was 5 cm. Ten (53 %) patients underwent EMR prior to RFA. CE-D was achieved in 88 % of patients, and CE-IM was achieved in 65 % of patients. A median of 2 (1-7) treatments were required, and there were no immediate post-procedure complications. Two patients developed recurrent dysplasia following complete eradication of BE, and each case was successfully managed with repeat RFA. Three patients (16 %) required esophagectomy within 6 months following RFA. A complete surgical resection was achieved in each case, and none of the patients developed lymph node metastases. CONCLUSIONS: Complete eradication of HGD and IMC can be achieved via endoscopic therapy, thus avoiding esophagectomy in the majority of patients. However, a subset of patients will fail this treatment approach and will require surgical resection. With aggressive endoscopic treatment and surveillance, these patients can be identified at an early stage while curative resection is still possible.


Asunto(s)
Centros Médicos Académicos , Esófago de Barrett/cirugía , Ablación por Catéter/métodos , Disección/métodos , Esofagoscopía/métodos , Esófago/patología , Mucosa Intestinal/cirugía , Anciano , Esófago de Barrett/diagnóstico , Esófago/cirugía , Femenino , Estudios de Seguimiento , Humanos , Mucosa Intestinal/patología , Masculino , Metaplasia , Estudios Retrospectivos , Resultado del Tratamiento
10.
Phytochem Anal ; 25(2): 155-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24185747

RESUMEN

INTRODUCTION: The PhoP-PhoQ system from Salmonella enterica serovar Typhimurium controls the expression of factors that are critical for the bacterial entry into host cells and the bacterial intramacrophage survival. Therefore it constitutes an interesting target to search for compounds that would control Salmonella virulence. Localisation of such compounds in complex matrixes could be facilitated by thin-layer chromatography (TLC) bioautography. OBJECTIVE: To develop a TLC bioautography to detect inhibitors of the PhoP-PhoQ regulatory system in complex matrixes. METHODS: The TLC plates were covered by a staining solution containing agar, Luria-Bertani medium, 5-bromo-4-chloro-3-indolyl-ß-D-galactopyranoside (X-gal), kanamycin and a S. typhimurium strain that harbours a reporter transcriptional lacZ-fusion to an archetypal PhoP-activated gene virK. After solidification, the plate was incubated at 37°C for 16 h. RESULTS: A bioautographic assay suitable for the localisation of inhibitors of the PhoP-PhoQ system activity in S. enterica serovar Typhimurium present in a complex matrix is described. The assay was used to analyse a series of hydrolysed extracts prepared by alkaline treatment of crude plant extracts. Bioassay-guided analysis of the fractions by NMR spectroscopy and MS led to the identification of linolenic and linoleic acids as inhibitory input signals of the PhoP-PhoQ system. CONCLUSION: A practical tool is introduced that facilitates detection of inhibitors of the Salmonella PhoP-PhoQ regulatory system. The assay convenience is illustrated with the identification of the first naturally occurring organic compounds that down-regulate a PhoP-PhoQ regulatory system from a hydrolysed extract.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Cromatografía en Capa Delgada/métodos , Ácido Linoleico/farmacología , Extractos Vegetales/farmacología , Salmonella typhimurium/efectos de los fármacos , Ácido alfa-Linolénico/farmacología , Dimerización , Galactósidos , Genes Reporteros , Hidrólisis , Indoles , Ácido Linoleico/química , Ácido Linoleico/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Magnoliopsida/química , Espectrometría de Masas , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Salmonella typhimurium/metabolismo , Virulencia , Ácido alfa-Linolénico/química , Ácido alfa-Linolénico/aislamiento & purificación
11.
Nat Prod Bioprospect ; 14(1): 35, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822174

RESUMEN

The generation of chemically engineered essential oils (CEEOs) prepared from bi-heteroatomic reactions using ammonium thiocyanate as a source of bioactive compounds is described. The impact of the reaction on the chemical composition of the mixtures was qualitatively demonstrated through GC-MS, utilizing univariate and multivariate analysis. The reaction transformed most of the components in the natural mixtures, thereby expanding the chemical diversity of the mixtures. Changes in inhibition properties between natural and CEEOs were demonstrated through acetylcholinesterase TLC autography, resulting in a threefold increase in the number of positive events due to the modification process. The chemically engineered Origanum vulgare L. essential oil was subjected to bioguided fractionation, leading to the discovery of four new active compounds with similar or higher potency than eserine against the enzyme. The results suggest that the directed chemical transformation of essential oils can be a valuable strategy for discovering new acetylcholinesterase (AChE) inhibitors.

12.
Sci Rep ; 14(1): 21395, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271796

RESUMEN

This study investigates vertically stacked CVD grown ReS2/MoS2 unipolar heterostructure device as Field Effect Transistor (FET) device wherein ReS2 on top acts as drain and MoS2 at bottom acts as source. The electrical measurements of ReS2/MoS2 FET device were carried out and variation in Ids (drain current) Vs Vds (drain voltage) for different Vgs (gate voltage) revealing the n-type device characteristics. Furthermore, the threshold voltage was calculated at the gate bias voltage corresponding to maximum transconductance (gm) value which is ~ 12 V. The mobility of the proposed ReS2/MoS2 heterojunction FET device was calculated as 60.97 cm2 V-1 s-1. The band structure of the fabricated vDW heterostructure was extracted utilizing ultraviolet photoelectron spectroscopy and the UV-visible spectroscopy revealing the formation of 2D electron gas (2DEG) at the ReS2/MoS2 interface which explains the high carrier mobility of the fabricated FET. The field effect behavior is studied by the modulation of the barrier height across heterojunction and detailed explanation is presented in terms of the charge transport across the heterojunction.

13.
Brain Sci ; 14(3)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38539636

RESUMEN

OBJECTIVE: This study aims to provide an overview of pharmacological trials that examine the neurocognitive effects of psychedelics among healthy individuals and patients with post-traumatic stress disorder (PTSD) or major depressive disorder (MDD). METHODS: The Preferred Reporting Items for Systematic Reviews (PRISMA) was used as a guide to structure and report the findings for this review. A literature search included the MEDLINE database up until December 2022. We included randomized or open-label human studies of MDMA, psilocybin, mescaline, LSD, DMT, or cannabis reporting non-emotionally charged neurocognitive outcomes ("cold cognition") measured through validated neuropsychological tests. RESULTS: A total of 43 full-text papers on MDMA (15), cannabis (12), LSD (6), psilocybin (9), DMT/ayahuasca (1), and mescaline (0) were included, mostly on healthy subjects. A single article on MDMA's effects on cognition in subjects with PTSD was included; there were no studies on psychedelics and neurocognition in MDD. Most of the studies on healthy subjects reported detrimental or neutral effects on cognition during the peak effect of psychedelics with a few exceptions (e.g., MDMA improved psychomotor function). Performance on the type of neurocognitive dimension (e.g., attention, memory, executive function, psychomotor) varies by type of psychedelic, dosage, and cognitive testing. CONCLUSIONS: Small samples and a lack of uniformed methods across studies preclude unequivocal conclusions on whether psychedelics enhance, decrease, or have no significant effect on cognitive performance. It is foreseen that psychedelics will soon become an available treatment for various psychiatric disorders. The acute and long-term effects on cognition caused by psychedelics should be assessed in future studies.

14.
Methods Mol Biol ; 2783: 25-33, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478224

RESUMEN

Perivascular cells represent an in vivo counterpart of mesenchymal stromal/stem cells that populate the outer layer of blood vessels. Pericytes in capillaries and microvessels and adventitial cells of large arteries and veins give rise to stem/progenitor cells when isolated and cultured in vitro. These cells have been considered candidate cell types for cell therapy. Adipose tissue, being highly vascularized, dispensable, and easily accessed, is a viable option to obtain perivascular cells for use in research and in clinical trials. Here, we describe our established protocol to extract perivascular cells from human fat through fluorescence-activated cell sorting, which allows for the isolation of defined populations of progenitor cells with high reproducibility.


Asunto(s)
Células Madre Mesenquimatosas , Humanos , Citometría de Flujo , Reproducibilidad de los Resultados , Células Madre Mesenquimatosas/metabolismo , Pericitos/metabolismo , Tejido Adiposo , Diferenciación Celular
15.
Nat Commun ; 15(1): 1653, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395882

RESUMEN

Hematopoietic stem cells (HSCs) produce all essential cellular components of the blood. Stromal cell lines supporting HSCs follow a vascular smooth muscle cell (vSMC) differentiation pathway, suggesting that some hematopoiesis-supporting cells originate from vSMC precursors. These pericyte-like precursors were recently identified in the aorta-gonad-mesonephros (AGM) region; however, their role in the hematopoietic development in vivo remains unknown. Here, we identify a subpopulation of NG2+Runx1+ perivascular cells that display a sclerotome-derived vSMC transcriptomic profile. We show that deleting Runx1 in NG2+ cells impairs the hematopoietic development in vivo and causes transcriptional changes in pericytes/vSMCs, endothelial cells and hematopoietic cells in the murine AGM. Importantly, this deletion leads also to a significant reduction of HSC reconstitution potential in the bone marrow in vivo. This defect is developmental, as NG2+Runx1+ cells were not detected in the adult bone marrow, demonstrating the existence of a specialised pericyte population in the HSC-generating niche, unique to the embryo.


Asunto(s)
Células Endoteliales , Músculo Liso Vascular , Ratones , Animales , Músculo Liso Vascular/metabolismo , Células Endoteliales/metabolismo , Diferenciación Celular , Células Madre Hematopoyéticas/metabolismo , Hematopoyesis/genética , Mesonefro , Gónadas/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo
16.
Nat Commun ; 15(1): 7483, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209825

RESUMEN

Enhancing thermogenic brown adipose tissue (BAT) function is a promising therapeutic strategy for metabolic disease. However, predominantly thermoneutral modern human living conditions deactivate BAT. We demonstrate that selective adipocyte deficiency of the oxygen-sensor HIF-prolyl hydroxylase (PHD2) gene overcomes BAT dormancy at thermoneutrality. Adipocyte-PHD2-deficient mice maintain higher energy expenditure having greater BAT thermogenic capacity. In human and murine adipocytes, a PHD inhibitor increases Ucp1 levels. In murine brown adipocytes, antagonising the major PHD2 target, hypoxia-inducible factor-(HIF)-2a abolishes Ucp1 that cannot be rescued by PHD inhibition. Mechanistically, PHD2 deficiency leads to HIF2 stabilisation and binding of HIF2 to the Ucp1 promoter, thus enhancing its expression in brown adipocytes. Serum proteomics analysis of 5457 participants in the deeply phenotyped Age, Gene and Environment Study reveal that serum PHD2 associates with increased risk of metabolic disease. Here we show that adipose-PHD2-inhibition is a therapeutic strategy for metabolic disease and identify serum PHD2 as a disease biomarker.


Asunto(s)
Tejido Adiposo Pardo , Metabolismo Energético , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Termogénesis , Proteína Desacopladora 1 , Animales , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Humanos , Ratones , Tejido Adiposo Pardo/metabolismo , Termogénesis/genética , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Masculino , Ratones Noqueados , Femenino , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Adipocitos/metabolismo , Oxígeno/metabolismo , Ratones Endogámicos C57BL , Adipocitos Marrones/metabolismo , Adulto , Regiones Promotoras Genéticas , Persona de Mediana Edad
17.
Dev Cell ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39025061

RESUMEN

Human blood vessel walls show concentric layers, with the outermost tunica adventitia harboring mesenchymal progenitor cells. These progenitor cells maintain vessel homeostasis and provide a robust cell source for cell-based therapies. However, human adventitial stem cell niche has not been studied in detail. Here, using spatial and single-cell transcriptomics, we characterized the phenotype, potential, and microanatomic distribution of human perivascular progenitors. Initially, spatial transcriptomics identified heterogeneity between perivascular layers of arteries and veins and delineated the tunica adventitia into inner and outer layers. From this spatial atlas, we inferred a hierarchy of mesenchymal progenitors dictated by a more primitive cell with a high surface expression of CD201 (PROCR). When isolated from humans and mice, CD201Low expression typified a mesodermal committed subset with higher osteogenesis and less proliferation than CD201High cells, with a downstream effect on canonical Wnt signaling through DACT2. CD201Low cells also displayed high translational potential for bone tissue generation.

18.
bioRxiv ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38979210

RESUMEN

Bone pain is a presenting feature of bone cancers such as osteosarcoma (OS), relayed by skeletal-innervating peripheral afferent neurons. Potential functions of tumor-associated sensory neurons in bone cancers beyond pain sensation are unknown. To uncover neural regulatory functions, a chemical-genetic approach in mice with a knock-in allele for TrkA was used to functionally perturb sensory nerve innervation during OS growth and disease progression. TrkA inhibition in transgenic mice led to significant reductions in sarcoma-associated sensory innervation and vascularization, tumor growth and metastasis, and prolonged overall survival. Single-cell transcriptomics revealed that sarcoma denervation was associated with phenotypic alterations in both OS tumor cells and cells within the tumor microenvironment, and with reduced calcitonin gene-related peptide (CGRP) and vascular endothelial growth factor (VEGF) signaling. Multimodal and multi-omics analyses of human OS bone samples and human dorsal root ganglia neurons further implicated peripheral innervation and neurotrophin signaling in OS tumor biology. In order to curb tumor-associated axonal ingrowth, we next leveraged FDA-approved bupivacaine liposomes leading to significant reductions in sarcoma growth, vascularity, as well as alleviation of pain. In sum, TrkA-expressing peripheral neurons positively regulate key aspects of OS progression and sensory neural inhibition appears to disrupt calcitonin receptor signaling (CALCR) and VEGF signaling within the sarcoma microenvironment leading to significantly reduced tumor growth and improved survival. These data suggest that interventions to prevent pathological innervation of osteosarcoma represent a novel adjunctive therapy to improve clinical outcomes and survival.

19.
bioRxiv ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38895367

RESUMEN

The profound pain accompanying bone fracture is mediated by somatosensory neurons, which also appear to be required to initiate bone regeneration following fracture. Surprisingly, the precise neuroanatomical circuitry mediating skeletal nociception and regeneration remains incompletely understood. Here, we characterized somatosensory dorsal root ganglia (DRG) afferent neurons innervating murine long bones before and after experimental long bone fracture in mice. Retrograde labeling of DRG neurons by an adeno-associated virus with peripheral nerve tropism showed AAV-tdT signal. Single cell transcriptomic profiling of 6,648 DRG neurons showed highest labeling across CGRP+ neuron clusters (6.9-17.2%) belonging to unmyelinated C fibers, thinly myelinated Aδ fibers and Aß-Field LTMR (9.2%). Gene expression profiles of retrograde labeled DRG neurons over multiple timepoints following experimental stress fracture revealed dynamic changes in gene expression corresponding to the acute inflammatory ( S100a8 , S100a9 ) and mechanical force ( Piezo2 ). Reparative phase after fracture included morphogens such as Tgfb1, Fgf9 and Fgf18 . Two methods to surgically or genetically denervate fractured bones were used in combination with scRNA-seq to implicate defective mesenchymal cell proliferation and osteodifferentiation as underlying the poor bone repair capacity in the presence of attenuated innervation. Finally, multi-tissue scRNA-seq and interactome analyses implicated neuron-derived FGF9 as a potent regulator of fracture repair, a finding compatible with in vitro assessments of neuron-to-skeletal mesenchyme interactions.

20.
Mol Ther ; 20(10): 1893-901, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22828503

RESUMEN

Niemann-Pick disease Type A (NPA) is a neuronopathic lysosomal storage disease (LSD) caused by the loss of acid sphingomyelinase (ASM). The goals of the current study are to ascertain the levels of human ASM that are efficacious in ASM knockout (ASMKO) mice, and determine whether these levels can be attained in non-human primates (NHPs) using a multiple parenchymal injection strategy. Intracranial injections of different doses of AAV1-hASM in ASMKO mice demonstrated that only a small amount of enzyme (<0.5 mg hASM/g tissue) was sufficient to increase survival, and that increasing the amount of hASM did not enhance this survival benefit until a new threshold level of >10 mg hASM/g tissue was reached. In monkeys, injection of 12 tracts of AAV1-hASM resulted in efficacious levels of enzyme in broad regions of the brain that was aided, in part, by axonal transport of adeno-associated virus (AAV) and movement through the perivascular space. This study demonstrates that a combination cortical, subcortical, and cerebellar injection protocol could provide therapeutic levels of hASM to regions of the NHP brain that are highly affected in NPA patients. The information from this study might help design new AAV-mediated enzyme replacement protocols for NPA and other neuronopathic LSDs in future clinical trials.


Asunto(s)
Terapia Genética , Enfermedad de Niemann-Pick Tipo A/terapia , Esfingomielina Fosfodiesterasa/deficiencia , Animales , Encéfalo/enzimología , Dependovirus/genética , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Vectores Genéticos/genética , Inyecciones , Macaca fascicularis , Masculino , Ratones , Ratones Noqueados , Enfermedad de Niemann-Pick Tipo A/patología , Primates/metabolismo , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA