Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Obstet Gynecol Scand ; 103(8): 1564-1569, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38872454

RESUMEN

INTRODUCTION: Distinguishing paracentric inversions (PAIs) from chromosomal insertions has traditionally relied on fluorescent in situ hybridization (FISH) techniques, but recent advancements in high-throughput sequencing have enabled the use of genome sequencing for such differentiation. In this study, we present a 38-year-old male carrier of a paracentric inversion on chromosome 2q, inv (2)(q31.2q34), whose partner experienced recurrent miscarriages. MATERIAL AND METHODS: FISH analysis confirmed the inversion, and genome sequencing was employed for detailed characterization. RESULTS: Preimplantation genetic testing (PGT) revealed that all assessed embryos were balanced, consistent with the low risk of unbalanced offspring associated with PAIs. While PAI carriers traditionally exhibit low risk of producing unbalanced offspring, exceptions exist due to crossover events within the inversion loop. Although the sample size was limited, the findings align with existing sperm study data, supporting the rare occurrence of unbalanced progeny in PAI carriers. CONCLUSIONS: This study highlights the possibility of characterizing PAIs using genome sequencing to enable correct reproductive counseling and PGT decisions. Detailed characterization of a PAI is crucial for understanding potential outcomes and guiding PGT strategies, as accurate knowledge of the inversion size is essential for appropriate method selection in PGT. Given the very low risk of unbalanced offspring in PAI carriers, routine PGT may not be warranted but should be considered in specific cases with a history of unbalanced progeny or recurrent miscarriages. This study contributes to our understanding of PAI segregation and its implications for reproductive outcomes.


Asunto(s)
Inversión Cromosómica , Diagnóstico Preimplantación , Humanos , Masculino , Adulto , Diagnóstico Preimplantación/métodos , Femenino , Embarazo , Pruebas Genéticas/métodos , Aborto Habitual/genética , Cromosomas Humanos Par 2/genética , Hibridación Fluorescente in Situ , Secuenciación Completa del Genoma
2.
Nat Cell Biol ; 24(6): 845-857, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35637409

RESUMEN

The first lineage choice in human embryo development separates trophectoderm from the inner cell mass. Naïve human embryonic stem cells are derived from the inner cell mass and offer possibilities to explore how lineage integrity is maintained. Here, we discover that polycomb repressive complex 2 (PRC2) maintains naïve pluripotency and restricts differentiation to trophectoderm and mesoderm lineages. Through quantitative epigenome profiling, we found that a broad gain of histone H3 lysine 27 trimethylation (H3K27me3) is a distinct feature of naïve pluripotency. We define shared and naïve-specific bivalent promoters featuring PRC2-mediated H3K27me3 concomitant with H3K4me3. Naïve bivalency maintains key trophectoderm and mesoderm transcription factors in a transcriptionally poised state. Inhibition of PRC2 forces naïve human embryonic stem cells into an 'activated' state, characterized by co-expression of pluripotency and lineage-specific transcription factors, followed by differentiation into either trophectoderm or mesoderm lineages. In summary, PRC2-mediated repression provides a highly adaptive mechanism to restrict lineage potential during early human development.


Asunto(s)
Células Madre Embrionarias Humanas , Complejo Represivo Polycomb 2 , Diferenciación Celular/genética , Desarrollo Embrionario , Histonas/genética , Células Madre Embrionarias Humanas/metabolismo , Humanos , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA