Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2200019119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914130

RESUMEN

The nanoscale structure and dynamics of proteins on surfaces has been extensively studied using various imaging techniques, such as transmission electron microscopy and atomic force microscopy (AFM) in liquid environments. These powerful imaging techniques, however, can potentially damage or perturb delicate biological material and do not provide chemical information, which prevents a fundamental understanding of the dynamic processes underlying their evolution under physiological conditions. Here, we use a platform developed in our laboratory that enables acquisition of infrared (IR) spectroscopy and AFM images of biological material in physiological liquids with nanometer resolution in a cell closed by atomically thin graphene membranes transparent to IR photons. In this work, we studied the self-assembly process of S-layer proteins at the graphene-aqueous solution interface. The graphene acts also as the membrane separating the solution containing the proteins and Ca2+ ions from the AFM tip, thus eliminating sample damage and contamination effects. The formation of S-layer protein lattices and their structural evolution was monitored by AFM and by recording the amide I and II IR absorption bands, which reveal the noncovalent interaction between proteins and their response to the environment, including ionic strength and solvation. Our measurement platform opens unique opportunities to study biological material and soft materials in general.


Asunto(s)
Glicoproteínas de Membrana , Microscopía de Fuerza Atómica , Nanotecnología , Espectrofotometría Infrarroja , Amidas/química , Calcio , Grafito/química , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/ultraestructura , Concentración Osmolar , Fotones , Solventes/química , Agua/química
2.
Angew Chem Int Ed Engl ; : e202408894, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830120

RESUMEN

Developing a desirable ethanol dehydrogenation process necessitates a highly efficient and selective catalyst with low cost. Herein, we show that the "complex active site" consisting of atomically dispersed Au atoms with the neighboring oxygen vacancies (Vo) and undercoordinated cation on oxide supports can be prepared and display unique catalytic properties for ethanol dehydrogenation. The "complex active site" Au-Vo-Zr3+ on Au1/ZrO2 exhibits the highest H2 production rate, with above 37,964 mol H2 per mol Au per hour (385 g H2 g-1 Au h-1) at 350 oC, which is 3.32, 2.94 and 15 times higher than Au1/CeO2, Au1/TiO2, and Au1/Al2O3, respectively. Combining experimental and theoretical studies, we demonstrate the structural sensitivity of these complex sites by assessing their selectivity and activity in ethanol dehydrogenation. Our study sheds new light on the design and development of cost-effective and highly efficient catalysts for ethanol dehydrogenation. Fundamentally, atomic-level catalyst design by colocalizing catalytically active metal atoms forming a structure-sensitive "complex site", is a crucial way to advance from heterogeneous catalysis to molecular catalysis. Our study advanced the understanding of the structure sensitivity of the active site in atomically dispersed catalysts.

3.
Chem Rev ; 121(2): 962-1006, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33290057

RESUMEN

This is a Review of recent studies on surface structures of crystalline materials in the presence of gases in the mTorr to atmospheric pressure range, which brings surface science into a brand new direction. Surface structure is not only a property of the material but also depends on the environment surrounding it. This Review emphasizes that high/ambient pressure goes hand-in-hand with ambient temperature, because weakly interacting species can be densely covering surfaces at room temperature only when in equilibrium with a sufficiently high gas pressure. At the same time, ambient temperatures help overcome activation barriers that impede diffusion and reactions. Even species with weak binding energy can have residence lifetimes on the surface that allow them to trigger reconstructions of the atomic structure. The consequences of this are far from trivial because under ambient conditions the structure of the surface dynamically adapts to its environment and as a result completely new structures are often formed. This new era of surface science emerged and spread rapidly after the retooling of characterization techniques that happened in the last two decades. This Review is focused on the new surface structures enabled particularly by one of the new tools: high-pressure scanning tunneling microscopy. We will cover several important surfaces that have been intensely scrutinized, including transition metals, oxides, and alloys.

4.
J Am Chem Soc ; 144(20): 8927-8931, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35575474

RESUMEN

Understanding the chemical environment and interparticle dynamics of nanoparticle electrocatalysts under operating conditions offers valuable insights into tuning their activity and selectivity. This is particularly important to the design of Cu nanocatalysts for CO2 electroreduction due to their dynamic nature under bias. Here, we have developed operando electrochemical resonant soft X-ray scattering (EC-RSoXS) to probe the chemical identity of active sites during the dynamic structural transformation of Cu nanoparticle (NP) ensembles through 1 µm thick electrolyte. Operando scattering-enhanced X-ray absorption spectroscopy (XAS) serves as a powerful technique to investigate the size-dependent catalyst stability under beam exposure while monitoring the potential-dependent surface structural changes. Small NPs (7 nm) in aqueous electrolyte were found to experience a predominant soft X-ray beam-induced oxidation to CuO despite only sub-second X-ray exposure. In comparison, large NPs (18 nm) showed improved resistivity to beam damage, which allowed the reliable observation of surface Cu2O electroreduction to metallic Cu. Small-angle X-ray scattering (SAXS) statistically probes the particle-particle interactions of large ensembles of NPs. This study points out the need for rigorous examination of beam effects for operando X-ray studies on electrocatalysts. The strategy of using EC-RSoXS that combines soft XAS and SAXS can serve as a general approach to simultaneously investigate the chemical environment and interparticle information on nanocatalysts.


Asunto(s)
Dióxido de Carbono , Catálisis , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Rayos X
5.
J Am Chem Soc ; 144(29): 13327-13333, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35849827

RESUMEN

The structure of interfacial water near suspended graphene electrodes in contact with aqueous solutions of Na2SO4, NH4Cl, and (NH4)2SO4 has been studied using confocal Raman spectroscopy, sum frequency vibrational spectroscopy, and Kelvin probe force microscopy. SO42- anions were found to preferentially accumulate near the interface at an open circuit potential (OCP), creating an electrical field that orients water molecules below the interface, as revealed by the increased intensity of the O-H stretching peak of H-bonded water. No such increase is observed with NH4Cl at the OCP. The intensity of the dangling O-H bond stretching peak however remains largely unchanged. The degree of orientation of the water molecules as well as the electrical double layer strength increased further when positive voltages are applied. Negative voltages on the other hand produced only small changes in the intensity of the H-bonded water peaks but affected the intensity and frequency of dangling O-H bond peaks. The TOC figure is an oversimplified representation of the system in this work.


Asunto(s)
Grafito , Electrodos , Iones/química , Espectrometría Raman , Agua/química
6.
Nano Lett ; 21(15): 6684-6689, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34283612

RESUMEN

Phase-separation is commonly observed in multimetallic nanomaterials, yet it is not well understood how immiscible elements distribute in a thermodynamically stable nanoparticle. Herein, we studied the phase-separation of Au and Rh in nanoparticles using electron microscopy and tomography techniques. The nanoparticles were thermally annealed to form thermodynamically stable structures. HAADF-STEM and EDS characterizations reveal that Au and Rh segregate into two domains while their miscibility is increased. Using aberration-corrected HAADF-STEM and atomic electron tomography, we show that the increased solubility of Au in Rh is achieved by forming Au clusters and single atoms inside the Rh domains and on the Rh surface. Furthermore, based on the three-dimensional reconstruction of a AuRh nanoparticle, we can visualize the uneven interface that is embedded in the nanoparticle. The results advance our understanding on the nanoscale thermodynamic behavior of metal mixtures, which is crucial for the optimization of multimetallic nanostructures for many applications.


Asunto(s)
Nanopartículas , Nanoestructuras , Microscopía Electrónica , Solubilidad , Termodinámica
7.
J Chem Phys ; 155(5): 051101, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34364344

RESUMEN

Undercoordinated metal nanoclusters have shown great promise for various catalytic applications. However, their activity is often limited by the covalently bonded ligands, which could block the active surface sites. Here, we investigate the ligand removal process for Au25 nanoclusters using both thermal and electrochemical treatments, as well as its impact on the electroreduction of CO2 to CO. The Au25 nanoclusters are synthesized with 2-phenylethanethiol as the capping agent and anchored on sulfur-doped graphene. The thiolate ligands can be readily removed under either thermal annealing at ≥180°C or electrochemical biasing at ≤-0.5 V vs reversible hydrogen electrode, as evidenced by the Cu underpotential deposition surface area measurement, x-ray photoelectron spectroscopy, and extended x-ray absorption fine structure spectroscopy. However, these ligand-removing treatments also trigger the structural evolution of Au25 nanoclusters concomitantly. The thermally and electrochemically treated Au25 nanoclusters show enhanced activity and selectivity for the electrochemical CO2-to-CO conversion than their pristine counterpart, which is attributed to the exposure of undercoordinated Au sites on the surface after ligand removal. This work provides facile strategies to strip away the staple ligands from metal nanoclusters and highlights its importance in promoting the catalytic performances.

8.
Nano Lett ; 20(3): 1974-1979, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32048513

RESUMEN

Pt-based alloy catalysts are promising candidates for fuel-cell applications, especially for cathodic oxygen reduction reaction (ORR) and anodic methanol oxidation reaction (MOR). The rational design of composition and morphology is crucial to promoting catalytic performances. Here, we report the synthesis of Pt-Co nanoframes via chemical etching of Co from solid rhombic dodecahedra. The obtained Pt-Co nanoframes exhibit excellent ORR mass activity in acidic electrolyte, which is as high as 0.40 A mgPt-1 initially and 0.34 A mgPt-1 after 10 000 potential cycles at 0.95 VRHE. Furthermore, their MOR mass activity in alkaline media is up to 4.28 A mgPt-1 and is 4-fold higher than that of commercial Pt/C catalyst. Experimental studies indicate that the weakened binding of intermediate carbonaceous poison contributes to the enhanced MOR behavior. More impressively, the Pt-Co nanoframes also demonstrate remarkable stability under long-term testing, which could be attributed to the negligible electrochemical Co dissolution.

9.
Nano Lett ; 20(9): 6364-6371, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32786946

RESUMEN

Free-standing ultrathin (∼2 nm) films of several oxides (Al2O3,TiO2, and others) have been developed, which are mechanically robust and transparent to electrons with Ekin ≥ 200 eV and to photons. We demonstrate their applicability in environmental X-ray photoelectron and infrared spectroscopy for molecular level studies of solid-gas (≥1 bar) and solid-liquid interfaces. These films act as membranes closing a reaction cell and as substrates and electrodes for electrochemical reactions. The remarkable properties of such ultrathin oxides membranes enable atomic/molecular level studies of interfacial phenomena, such as corrosion, catalysis, electrochemical reactions, energy storage, geochemistry, and biology, in a broad range of environmental conditions.

10.
J Am Chem Soc ; 142(18): 8312-8322, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32281380

RESUMEN

The reaction of CO and O2 with submonolayer and multilayer CoOx films on Pt(111), to produce CO2, was investigated at room temperature in the mTorr pressure regime. Using operando ambient pressure X-ray photoelectron spectroscopy and high pressure scanning tunneling microscopy, as well as density functional theory calculations, we found that the presence of oxygen vacancies in partially oxidized CoOx films significantly enhances the CO oxidation activity to form CO2 upon exposure to mTorr pressures of CO at room temperature. In contrast, CoO films without O-vacancies are much less active for CO2 formation at RT, and CO only adsorbed in the form of carbonate species that are stable up to 260 °C. On submonolayer CoOx islands, the carbonates form preferentially at island edges, deactivating the edge sites for CO2 formation, even while the reaction proceeds inside the islands. These results provide a detailed understanding of CO oxidation pathways on systems where noble metals such as Pt interact with reducible oxides.

11.
Nano Lett ; 19(8): 5388-5393, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31306028

RESUMEN

We present a new methodology that enables studies of the molecular structure of graphene-liquid interfaces with nanoscale spatial resolution. It is based on Fourier transform infrared nanospectroscopy (nano-FTIR), where the infrared (IR) field is plasmonically enhanced near the tip apex of an atomic force microscope (AFM). The graphene seals a liquid electrolyte reservoir while acting also as a working electrode. The photon transparency of graphene enables IR spectroscopy studies of its interface with liquids, including water, propylene carbonate, and aqueous ammonium sulfate electrolyte solutions. We illustrate the method by comparing IR spectra obtained by nano-FTIR and attenuated total reflection (which has a detection depth of a few microns) demonstrating that the nano-FTIR method makes it possible to determine changes in speciation and ion concentration in the electric double and diffuse layers as a function of bias.

12.
J Am Chem Soc ; 140(21): 6575-6581, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29738671

RESUMEN

We studied the structure of the copper-cobalt (CuCo) surface alloy, formed by Co deposition on Cu(110), in dynamic equilibrium with CO. Using scanning tunneling microscopy (STM), we found that, in vacuum at room temperature and at low Co coverage, clusters of a few Co atoms substituting Cu atoms form at the surface. At CO pressures in the Torr range, we found that up to 2.5 CO molecules can bind on a single Co atom, in carbonyl-like configurations. Based on high-resolution STM images, together with density functional theory calculations, we determined the most stable CuCo cluster structures formed with bound CO. Such carbonyl-like formation manifests in shifts in the binding energy of the Co core-level peaks in X-ray photoelectron spectra, as well as shifts in the vibrational modes of adsorbed CO in infrared reflection absorption spectra. The multiple CO adsorption on a Co site weakens the Co-CO bond and thus reduces the C-O bond scission probability. Our results may explain the different product distribution, including higher selectivity toward alcohol formation, when bimetallic CuCo catalysts are used compared to pure Co.

13.
J Am Chem Soc ; 140(47): 16237-16244, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30369234

RESUMEN

Knowledge of the molecular composition and electronic structure of electrified solid-liquid interfaces is key to understanding elemental processes in heterogeneous reactions. Using X-ray absorption spectroscopy in the interface-sensitive electron yield mode (EY-XAS), first-principles electronic structure calculations, and multiscale simulations, we determined the chemical composition of the interfacial region of a polycrystalline platinum electrode in contact with aqueous sulfuric acid solution at potentials between the hydrogen and oxygen evolution reactions. We found that between 0.7 and 1.3 V vs Ag/AgCl the electrical double layer (EDL) region comprises adsorbed sulfate ions with hydrated hydronium ions in the next layer. No evidence was found for bisulfate or Pt-O/Pt-OH species, which have very distinctive spectral signatures. In addition to resolving the long-standing issue of the EDL structure, our work establishes interface- and element-sensitive EY-XAS as a powerful spectroscopic tool for studying condensed phase, buried solid-liquid interfaces relevant to various electrochemical processes and devices.

14.
Nat Mater ; 16(5): 558-564, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27992418

RESUMEN

Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver-gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changes occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.

15.
Nano Lett ; 17(11): 6847-6854, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28968125

RESUMEN

Many macroscopic properties such as collective chiral responses enhanced by coupled plasmonic nanoparticles require complex nanostructures. However, a key challenge is to directly assemble nanosized building blocks into functional entities with designed morphologies. For example, the DNA templated nanoparticle assembly has low scalability and requires aqueous conditions, while other approaches such as controlled drying and polymer templating access only simple 1-D, 2-D, and 3-D structures with limited assembly patterns. Here, we demonstrate a new self-assembly strategy that expands the diversity of 3-D nanoparticle assemblies. By subjecting supramolecular nanocomposites to cylindrical confinement, a range of new nanoparticle assemblies such as stacked rings and single and double helices can be readily obtained with a precisely defined morphology. Circular dichroism dark field scattering measurements on the single nanowire with Au helical ribbon-like assembly show chiral plasmonic response several orders of magnitude higher than that of natural chiral materials. The phase behavior of supramolecular nanocomposite under geometric constraints is quite different from that of block copolymer. It depends on the complex interplay among nanoparticle packing and phase behavior of parent block copolymers under confinement and can be governed by nanoparticle diffusion.

16.
Nano Lett ; 16(8): 5001-9, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27328034

RESUMEN

Heterogeneous catalysis occurs at the interface between a solid catalyst and the reactants. The structure of metal catalyst nanoparticles at the metal-gas interface is a key factor that determines catalytic selectivity and activity. Here we report that second-generation nanoclusters are formed on the initial catalyst nanoparticles as a result of interaction with the reactant molecules when the nanoparticles are in a gas phase at Torr pressure or higher. The formation of the second-generation nanoclusters is manifested by a decrease of the average coordination number of the metal atoms and a shift of their core level energies in the presence of gases. The formation of second-generation nanoclusters increases the number of undercoordinated sites, which are the most active for catalysis in many cases.

17.
J Am Chem Soc ; 138(40): 13246-13252, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27599672

RESUMEN

Using ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), we studied the adsorption and reactions of CO2 and CO2 + H2 on the Ni(111) surface to identify the surface chemical state and the nature of the adsorbed species during the methanation reaction. In 200 mTorr CO2, we found that NiO is formed from CO2 dissociation into CO and atomic oxygen. Additionally, carbonate (CO32-) is present on the surface from further reaction of CO2 with NiO. The addition of H2 into the reaction environment leads to reduction of NiO and the disappearance of CO32-. At temperatures >160 °C, CO adsorbed on hollow sites, and atomic carbon and OH species are present on the surface. We conclude that the methanation reaction proceeds via dissociation of CO2, followed by reduction of CO to atomic carbon and its hydrogenation to methane.

18.
J Am Chem Soc ; 138(26): 8207-11, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27280375

RESUMEN

Ambient-pressure X-ray photoelectron spectroscopy (APXPS) and high-pressure scanning tunneling microscopy (HPSTM) were used to study the structure and chemistry of model Cu(100) and Cu(111) catalyst surfaces in the adsorption and dissociation of CO2. It was found that the (100) face is more active in dissociating CO2 than the (111) face. Atomic oxygen formed after the dissociation of CO2 poisons the surface by blocking further adsorption of CO2. This "self-poisoning" mechanism explains the need to mix CO into the industrial feed for methanol production from CO2, as it scavenges the chemisorbed O. The HPSTM images show that the (100) surface breaks up into nanoclusters in the presence of CO2 at 20 Torr and above, producing active kink and step sites. If the surface is precovered with atomic oxygen, no such nanoclustering occurs.

19.
J Am Chem Soc ; 138(9): 3145-51, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26844953

RESUMEN

Scanning tunneling microscopy was used to probe the structure and growth of the first few layers of water on Ru(0001) and Pt(111) at the molecular level. The surface-bound first layer is composed of a mixture of water molecules forming hexagonal structures, both in registry and out-of-registry with the substrate atoms. The hexagons are connected by pentagonal and heptagonal units. At temperatures below 140 K, this layer structure gives rise to the growth of metastable amorphous structures in the second and higher layers. We found that in the transition from amorphous to crystalline ice the structure of the original bottom layer changes to one in perfect local registry with the hexagonal surfaces of Ru(0001) and Pt(111). We further discovered structural defects in the form of extended one-dimensional lines of five- and eight-membered rings that are domain boundaries and stacking faults in the growing ice layers, which lead to the formation of metastable cubic ice.

20.
Acc Chem Res ; 48(10): 2783-90, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26418288

RESUMEN

The adsorption and reactions of water on surfaces has attracted great interest, as water is involved in many physical and chemical processes at interfaces. On metal surfaces, the adsorption energy of water is comparable to the hydrogen bond strength in water. Therefore, the delicate balance between the water-water and the water-metal interaction strength determines the stability of water structures. In such systems, kinetic effects play an important role and many metastable states can form with long lifetimes, such that the most stable state may not reached. This has led to difficulties in the theoretical prediction of water structures as well as to some controversial results. The direct imaging using scanning tunneling microscopy (STM) in ultrahigh vacuum at low temperatures offers a reliable means of understanding the local structure and reaction of water molecules, in particular when interpreted in conjunction with density functional theory calculations. In this Account, a selection of recent STM results on the water adsorption and dissociation on close-packed metal surfaces is reviewed, with a particular focus on Ru(0001). The Ru(0001) surface is one where water adsorbs intact in a metastable state at low temperatures and where partially dissociated layers are formed at temperatures above ∼150 K. First, we will describe the structure of intact water clusters starting with the monomer up to the monolayer. We show that icelike wetting layers do not occur on close-packed metal surfaces but instead hydrogen bonded layers in the form of a mixture of pentagonal, hexagonal, and heptagonal molecular rings are observed. Second, we will discuss the dissociation mechanism of water on Ru(0001). We demonstrate that water adsorption changes from dissociative to molecular as a function of the oxygen preadsorbed on Ru. Finally, we briefly review recent STM experiments on bulk ice (Ih and Ic) and water adsorption on insulating thin films. We conclude with an outlook illustrating the manipulation capabilities of STM in respect to probe the proton and hydrogen dynamics in water clusters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA