Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Glia ; 66(10): 2174-2187, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30194875

RESUMEN

Astrogliosis is a hallmark of neuroinflammatory disorders such as multiple sclerosis (MS). A detailed understanding of the underlying molecular mechanisms governing astrogliosis might facilitate the development of therapeutic targets. We investigated whether Nav1.5 expression in astrocytes plays a role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a murine model of MS. We created a conditional knockout of Nav1.5 in astrocytes and determined whether this affects the clinical course of EAE, focal macrophage and T cell infiltration, and diffuse activation of astrocytes. We show that deletion of Nav1.5 from astrocytes leads to significantly worsened clinical outcomes in EAE, with increased inflammatory infiltrate in both early and late stages of disease, unexpectedly, in a sex-specific manner. Removal of Nav1.5 in astrocytes leads to increased inflammation in female mice with EAE, including increased astroglial response and infiltration of T cells and phagocytic monocytes. These cellular changes are consistent with more severe EAE clinical scores. Additionally, we found evidence suggesting possible dysregulation of the immune response-particularly with regard to infiltrating macrophages and activated microglia-in female Nav1.5 KO mice compared with WT littermate controls. Together, our results show that deletion of Nav1.5 from astrocytes leads to significantly worsened clinical outcomes in EAE, with increased inflammatory infiltrate in both early and late stages of disease, in a sex-specific manner.


Asunto(s)
Astrocitos/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Esclerosis Múltiple/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Caracteres Sexuales , Animales , Astrocitos/patología , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Unión al Calcio/metabolismo , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Monocitos/metabolismo , Monocitos/patología , Esclerosis Múltiple/patología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Médula Espinal/metabolismo , Médula Espinal/patología , Linfocitos T/metabolismo , Linfocitos T/patología
2.
Mol Med ; 21: 544-52, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26101954

RESUMEN

Diabetic neuropathic pain affects a substantial number of people and represents a major public health problem. Available clinical treatments for diabetic neuropathic pain remain only partially effective and many of these treatments carry the burden of side effects or the risk of dependence. The misexpression of sodium channels within nociceptive neurons contributes to abnormal electrical activity associated with neuropathic pain. Voltage-gated sodium channel Nav1.3 produces tetrodotoxin-sensitive sodium currents with rapid repriming kinetics and has been shown to contribute to neuronal hyperexcitability and ectopic firing in injured neurons. Suppression of Nav1.3 activity can attenuate neuropathic pain induced by peripheral nerve injury. Previous studies have shown that expression of Nav1.3 is upregulated in dorsal root ganglion (DRG) neurons of diabetic rats that exhibit neuropathic pain. Here, we hypothesized that viral-mediated knockdown of Nav1.3 in painful diabetic neuropathy would reduce neuropathic pain. We used a validated recombinant adeno-associated virus (AAV)-shRNA-Nav1.3 vector to knockdown expression of Nav1.3, via a clinically applicable intrathecal injection method. Three weeks following vector administration, we observed a significant rate of transduction in DRGs of diabetic rats that concomitantly reduced neuronal excitability of dorsal horn neurons and reduced behavioral evidence of tactile allodynia. Taken together, these findings offer a novel gene therapy approach for addressing chronic diabetic neuropathic pain.


Asunto(s)
Diabetes Mellitus Experimental/terapia , Hiperalgesia/terapia , Canal de Sodio Activado por Voltaje NAV1.3/genética , Traumatismos de los Nervios Periféricos/terapia , Animales , Dependovirus/genética , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Humanos , Hiperalgesia/genética , Canal de Sodio Activado por Voltaje NAV1.3/biosíntesis , Neuralgia/genética , Neuralgia/patología , Neuralgia/terapia , Neuronas/metabolismo , Neuronas/patología , Traumatismos de los Nervios Periféricos/genética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Ratas
3.
Glia ; 62(7): 1162-75, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24740847

RESUMEN

Astrogliosis is a prominent feature of many, if not all, pathologies of the brain and spinal cord, yet a detailed understanding of the underlying molecular pathways involved in the transformation from quiescent to reactive astrocyte remains elusive. We investigated the contribution of voltage-gated sodium channels to astrogliosis in an in vitro model of mechanical injury to astrocytes. Previous studies have shown that a scratch injury to astrocytes invokes dual mechanisms of migration and proliferation in these cells. Our results demonstrate that wound closure after mechanical injury, involving both migration and proliferation, is attenuated by pharmacological treatment with tetrodotoxin (TTX) and KB-R7943, at a dose that blocks reverse mode of the Na(+) /Ca(2+) exchanger (NCX), and by knockdown of Nav 1.5 mRNA. We also show that astrocytes display a robust [Ca(2+) ]i transient after mechanical injury and demonstrate that this [Ca(2+) ]i response is also attenuated by TTX, KB-R7943, and Nav 1.5 mRNA knockdown. Our results suggest that Nav 1.5 and NCX are potential targets for modulation of astrogliosis after injury via their effect on [Ca(2+) ]i .


Asunto(s)
Astrocitos/fisiología , Gliosis/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Heridas y Lesiones/fisiopatología , Animales , Astrocitos/efectos de los fármacos , Calcio/metabolismo , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Células Cultivadas , Corteza Cerebral , Técnicas de Silenciamiento del Gen , Gliosis/tratamiento farmacológico , Canal de Sodio Activado por Voltaje NAV1.5/genética , Estimulación Física , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Tetrodotoxina/farmacología , Tiourea/análogos & derivados , Tiourea/farmacología , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/fisiología , Heridas y Lesiones/tratamiento farmacológico
4.
Mol Ther ; 21(1): 49-56, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22910296

RESUMEN

Neuropathic pain is a chronic condition that is often refractory to treatment with available therapies and thus an unmet medical need. We have previously shown that the voltage-gated sodium channel Na(v)1.3 is upregulated in peripheral and central nervous system (CNS) of rats following nerve injury, and that it contributes to nociceptive neuron hyperexcitability in neuropathic conditions. To evaluate the therapeutic potential of peripheral Na(v)1.3 knockdown at a specific segmental level, we constructed adeno-associated viral (AAV) vector expressing small hairpin RNA against rat Na(v)1.3 and injected it into lumbar dorsal root ganglion (DRG) of rats with spared nerve injury (SNI). Our data show that direct DRG injection provides a model that can be used for proof-of-principle studies in chronic pain with respect to peripheral delivery route of gene transfer constructs, high transduction efficiency, flexibility in terms of segmental localization, and limited behavioral effects of the surgical procedure. We show that knockdown of Na(v)1.3 in lumbar 4 (L4) DRG results in an attenuation of nerve injury-induced mechanical allodynia in the SNI model. Taken together, our studies support the contribution of peripheral Na(v)1.3 to pain in adult rats with neuropathic pain, validate Na(v)1.3 as a target, and provide validation for this approach of AAV-mediated peripheral gene therapy.


Asunto(s)
Dependovirus/genética , Ganglios Espinales/metabolismo , Técnicas de Silenciamiento del Gen , Vectores Genéticos , Canal de Sodio Activado por Voltaje NAV1.3/fisiología , Enfermedades del Sistema Nervioso Periférico/prevención & control , ARN Interferente Pequeño/genética , Animales , Secuencia de Bases , Línea Celular , Cartilla de ADN , Regulación hacia Abajo , Masculino , Canal de Sodio Activado por Voltaje NAV1.3/genética , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
J Neurosci ; 32(20): 6795-807, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22593049

RESUMEN

Diabetic neuropathic pain imposes a huge burden on individuals and society, and represents a major public health problem. Despite aggressive efforts, diabetic neuropathic pain is generally refractory to available clinical treatments. A structure-function link between maladaptive dendritic spine plasticity and pain has been demonstrated previously in CNS and PNS injury models of neuropathic pain. Here, we reasoned that if dendritic spine remodeling contributes to diabetic neuropathic pain, then (1) the presence of malformed spines should coincide with the development of pain, and (2) disrupting maladaptive spine structure should reduce chronic pain. To determine whether dendritic spine remodeling contributes to neuropathic pain in streptozotocin (STZ)-induced diabetic rats, we analyzed dendritic spine morphology and electrophysiological and behavioral signs of neuropathic pain. Our results show changes in dendritic spine shape, distribution, and shape on wide-dynamic-range (WDR) neurons within lamina IV-V of the dorsal horn in diabetes. These diabetes-induced changes were accompanied by WDR neuron hyperexcitability and decreased pain thresholds at 4 weeks. Treatment with NSC23766 (N(6)-[2-[[4-(diethylamino)-1-methylbutyl]amino]-6-methyl-4-pyrimidinyl]-2-methyl-4,6-quinolinediamine trihydrochloride), a Rac1-specific inhibitor known to interfere with spine plasticity, decreased the presence of malformed spines in diabetes, attenuated neuronal hyperresponsiveness to peripheral stimuli, reduced spontaneous firing activity from WDR neurons, and improved nociceptive mechanical pain thresholds. At 1 week after STZ injection, animals with hyperglycemia with no evidence of pain had few or no changes in spine morphology. These results demonstrate that diabetes-induced maladaptive dendritic spine remodeling has a mechanistic role in neuropathic pain. Molecular pathways that control spine morphogenesis and plasticity may be promising future targets for treatment.


Asunto(s)
Aminoquinolinas/uso terapéutico , Espinas Dendríticas/patología , Neuropatías Diabéticas/patología , Plasticidad Neuronal/fisiología , Umbral del Dolor/fisiología , Pirimidinas/uso terapéutico , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Aminoquinolinas/administración & dosificación , Aminoquinolinas/farmacología , Animales , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/fisiología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/fisiopatología , Neuropatías Diabéticas/complicaciones , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/fisiopatología , Inyecciones Espinales , Masculino , Plasticidad Neuronal/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/patología , Células del Asta Posterior/fisiopatología , Pirimidinas/administración & dosificación , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley , Proteína de Unión al GTP rac1/antagonistas & inhibidores
6.
J Neurosci ; 31(50): 18391-400, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22171041

RESUMEN

Repulsive guidance molecule b (RGMb) is a bone morphogenetic protein (BMP) coreceptor and sensitizer of BMP signaling, highly expressed in adult dorsal root ganglion (DRG) sensory neurons. We used a murine RGMb knock-out to gain insight into the physiological role of RGMb in the DRG, and address whether RGMb-mediated modulation of BMP signaling influences sensory axon regeneration. No evidence for altered development of the PNS and CNS was detected in RGMb(-/-) mice. However, both cultured neonatal whole DRG explants and dissociated DRG neurons from RGMb(-/-) mice exhibited significantly fewer and shorter neurites than those from wild-type littermates, a phenomenon that could be fully rescued by BMP-2. Moreover, Noggin, an endogenous BMP signaling antagonist, inhibited neurite outgrowth in wild-type DRG explants from naive as well as nerve injury-preconditioned mice. Noggin is downregulated in the DRG after nerve injury, and its expression is highly correlated and inversely associated with the known regeneration-associated genes, which are induced in the DRG by peripheral axonal injury. We show that diminished BMP signaling in vivo, achieved either through RGMb deletion or BMP inhibition with Noggin, retarded early axonal regeneration after sciatic nerve crush injury. Our data suggest a positive modulatory contribution of RGMb and BMP signaling to neurite extension in vitro and early axonal regrowth after nerve injury in vivo and a negative effect of Noggin.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Portadoras/metabolismo , Regeneración Nerviosa/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Transducción de Señal/fisiología , Animales , Moléculas de Adhesión Celular Neuronal , Células Cultivadas , Proteínas Ligadas a GPI , Ganglios Espinales/metabolismo , Ratones , Ratones Noqueados , Compresión Nerviosa , Neuronas/metabolismo , Fosforilación/fisiología , Nervio Ciático/fisiología
7.
Exp Neurol ; 248: 509-19, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23933578

RESUMEN

Although nearly 11 million individuals yearly require medical treatment due to burn injuries and develop clinically intractable pain, burn injury-induced pain is poorly understood, with relatively few studies in preclinical models. To elucidate mechanisms of burn injury-induced chronic pain, we utilized a second-degree burn model, which produces a persistent neuropathic pain phenotype. Rats with burn injury exhibited reduced mechanical pain thresholds ipsilateral to the burn injury. Ipsilateral WDR neurons in the spinal cord dorsal horn exhibited hyperexcitability in response to a range of stimuli applied to their hindpaw receptive fields. Because dendritic spine morphology is strongly associated with synaptic function and transmission, we profiled dendritic spine shape, density, and distribution of WDR neurons. Dendritic spine dysgenesis was observed on ipsilateral WDR neurons in burn-injured animals exhibiting behavioral and electrophysiological evidence of neuropathic pain. Heat hyperalgesia testing produced variable results, as expected from previous studies of this model of second-degree burn injury in rats. Administration of Rac1-inhibitor, NSC23766, attenuated dendritic spine dysgenesis, decreased mechanical allodynia and electrophysiological signs of burn-induced neuropathic pain. These results support two related implications: that the presence of abnormal dendritic spines contributes to the maintenance of neuropathic pain, and that therapeutic targeting of Rac1 signaling merits further investigation as a novel strategy for pain management after burn injury.


Asunto(s)
Quemaduras/fisiopatología , Espinas Dendríticas/fisiología , Hiperalgesia/fisiopatología , Neuralgia/fisiopatología , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Potenciales de Acción/fisiología , Aminoquinolinas/farmacología , Animales , Quemaduras/complicaciones , Quemaduras/metabolismo , Espinas Dendríticas/efectos de los fármacos , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Masculino , Neuralgia/etiología , Neuralgia/metabolismo , Plasticidad Neuronal/fisiología , Dimensión del Dolor , Umbral del Dolor/fisiología , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Proteína de Unión al GTP rac1/metabolismo
8.
Cell Rep ; 5(5): 1353-64, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24316076

RESUMEN

Mammalian pain-related sensory neurons are derived from TrkA lineage neurons located in the dorsal root ganglion. These neurons project to peripheral targets throughout the body, which can be divided into superficial and deep tissues. Here, we find that the transcription factor Runx1 is required for the development of many epidermis-projecting TrkA lineage neurons. Accordingly, knockout of Runx1 leads to the selective loss of sensory innervation to the epidermis, whereas deep tissue innervation and two types of deep tissue pain are unaffected. Within these cutaneous neurons, Runx1 suppresses a large molecular program normally associated with sensory neurons that innervate deep tissues, such as muscle and visceral organs. Ectopic expression of Runx1 in these deep sensory neurons causes a loss of this molecular program and marked deficits in deep tissue pain. Thus, this study provides insight into a genetic program controlling the segregation of cutaneous versus deep tissue pain pathways.


Asunto(s)
Linaje de la Célula , Epidermis/inervación , Ganglios Espinales/citología , Músculos/inervación , Dolor Nociceptivo/genética , Células Receptoras Sensoriales/metabolismo , Animales , Línea Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Ganglios Espinales/fisiología , Ratones , Mutación , Dolor Nociceptivo/metabolismo , Dolor Nociceptivo/fisiopatología , Receptor trkA/genética , Receptor trkA/metabolismo , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/fisiología , Vísceras/inervación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA