Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biomech Eng ; 142(12)2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32601698

RESUMEN

Despite the large number of studies of intraventricular filling dynamics for potential clinical applications, little is known as to how the diastolic vortex ring properties are altered with reduction in internal volume of the cardiac left ventricle (LV). The latter is of particular importance in LV diastolic dysfunction (LVDD) and in congenital diseases such as hypertrophic cardiomyopathy (HCM), where LV hypertrophy (LVH) can reduce LV internal volume. We hypothesized that peak circulation and the rate of decay of circulation of the diastolic vortex would be altered with reducing end diastolic volume (EDV) due to increasing confinement. We tested this hypothesis on physical models of normal LV and HCM geometries, under identical prescribed inflow profiles and for multiple EDVs, using time-resolved particle image velocimetry (TR-PIV) measurements on a left heart simulator. Formation and pinch-off of the vortex ring were nearly unaffected with changes to geometry and EDV. Pinch-off occurred before the end of early filling (E-wave) in all test conditions. Peak circulation of the vortex core near the LV outflow tract (LVOT) increased with lowering EDV and was lowest for the HCM model. The rate of decay of normalized circulation in dimensionless formation time (T*) increased with decreasing EDV. When using a modified version of T* that included average LV cross-sectional area and EDV, normalized circulation of all tested EDVs collapsed closely in the normal LV model (10% maximum difference between EDVs). Collectively, our results show that LV shape and internal volume play a critical role in diastolic vortex ring dynamics.


Asunto(s)
Diástole , Ventrículos Cardíacos , Humanos , Persona de Mediana Edad , Función Ventricular Izquierda
2.
JTCVS Open ; 19: 61-67, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39015440

RESUMEN

Objective: The use of the transcatheter aortic valve in low-risk patients might lead to a second intervention due to the deterioration of the first 1. Understanding the implantation height is key to an effective redo transcatheter aortic valve replacement treatment. Methods: The effects of implantation height on the performance of a balloon-expandable valve within a self-expandable valve were assessed using hemodynamic testing and particle image velocimetry. The hemodynamic performances, leaflet kinematics, and turbulent shear stresses were measured and compared. Results: When a second balloon-expandable valve was positioned at varying heights relative to the first self-expandable valve, the leaflet motion of the first valve transitioned from free opening and closing to overhanging, and eventually to being entirely pinned to the stent, forming a neo-skirt. When the leaflets of the self-expandable valve could move freely, a decrease in regurgitation fraction was observed, but with an increased pressure gradient across the valve. Flow visualization indicated that the overhanging leaflets disrupted the flow, generating a higher level of turbulence. Conclusions: This study suggests that the overhanging leaflets should be avoided, whereas the other 2 scenarios should be carefully evaluated based on an individual patient's anatomy and the cause of failure of the first valve.

3.
Front Med Technol ; 6: 1376649, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756328

RESUMEN

This study aims to evaluate the fluid dynamic characteristics of the VenusP Valve System™ under varying cardiac outputs in vitro. A thorough hemodynamic study of the valve under physiological cardiac conditions was conducted and served as an independent assessment of the performance of the valve. Flow fields downstream of the valve near the pulmonary bifurcation were quantitatively studied by two-dimensional Particle Image Velocimetry (PIV). The obtained flow field was analyzed for potential regions of flow stasis and recirculation, and elevated shear stress and turbulence. High-speed en face imaging capturing the leaflet motion provided data for leaflet kinematic modeling. The experimental conditions for PIV studies were in accordance with ISO 5840-1:2021 standard, and two valves with different lengths and different orientations were studied. Results show good hemodynamics performance for the tested valves according to ISO 5840 standard without significant regions of flow stasis. Observed shear stress values are all well below established hemolysis limits.

4.
Ann Biomed Eng ; 52(2): 208-225, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37962675

RESUMEN

Computational modeling can be a critical tool to predict deployment behavior for transcatheter aortic valve replacement (TAVR) in patients with aortic stenosis. However, due to the mechanical complexity of the aortic valve and the multiphysics nature of the problem, described by partial differential equations (PDEs), traditional finite element (FE) modeling of TAVR deployment is computationally expensive. In this preliminary study, a PDEs-based reduced order modeling (ROM) framework is introduced for rapidly simulating structural deformation of the Medtronic Evolut R valve stent frame. Using fifteen probing points from an Evolut model with parametrized loads enforced, 105 FE simulations were performed in the so-called offline phase, creating a snapshot library. The library was used in the online phase of the ROM for a new set of applied loads via the proper orthogonal decomposition-Galerkin (POD-Galerkin) approach. Simulations of small radial deformations of the Evolut stent frame were performed and compared to full order model (FOM) solutions. Linear elastic and hyperelastic constitutive models in steady and unsteady regimes were implemented within the ROM. Since the original POD-Galerkin method is formulated for linear problems, specific methods for the nonlinear terms in the hyperelastic case were employed, namely, the Discrete Empirical Interpolation Method. The ROM solutions were in strong agreement with the FOM in all numerical experiments, with a speed-up of at least 92% in CPU Time. This framework serves as a first step toward real-time predictive models for TAVR deployment simulations.


Asunto(s)
Estenosis de la Válvula Aórtica , Dietilestilbestrol/análogos & derivados , Prótesis Valvulares Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Stents , Diseño de Prótesis , Resultado del Tratamiento
5.
Ann Biomed Eng ; 51(10): 2172-2181, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37219698

RESUMEN

Transcatheter aortic valve replacement (TAVR) in patients with bicuspid aortic valve disease (BAV) has potential risks of under expansion and non-circularity which may compromise long-term durability. This study aims to investigate calcium fracture and balloon over expansion in balloon-expandable TAVs on the stent deformation with the aid of simulation. BAV patients treated with the SAPIEN 3 Ultra with pre- and post-TAVR CTs were analyzed (n = 8). Simulations of the stent deployment were performed (1) with baseline simulation allowing calcium fracture, (2) without allowable calcium fracture and (3) with balloon over expansion (1 mm larger diameter). When compared to post CT, baseline simulations had minimal error in expansion (2.5% waist difference) and circularity (3.0% waist aspect ratio difference). When compared to baseline, calcium fracture had insignificant impact on the expansion (- 0.5% average waist difference) and circularity (- 1.6% average waist aspect ratio difference). Over expansion had significantly larger expansion compared to baseline (15.4% average waist difference) but had insignificant impact on the circularity (- 0.5% waist aspect ratio difference). We conclude that stent deformation can be predicted with minimal error, calcium fracture has small differences on the final stent deformation except in extreme calcified cases, and balloon over expansion expands the waist closer to nominal values.


Asunto(s)
Estenosis de la Válvula Aórtica , Enfermedad de la Válvula Aórtica Bicúspide , Prótesis Valvulares Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Reemplazo de la Válvula Aórtica Transcatéter/métodos , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Calcio , Resultado del Tratamiento , Diseño de Prótesis
6.
JTCVS Open ; 9: 28-38, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36003461

RESUMEN

Objective: In this study we aimed to understand the role of interaction of the Medtronic Evolut R transcatheter aortic valve with the ascending aorta (AA) by evaluating the performance of the valve and the pressure recovery in different AA diameters with the same aortic annulus size. Methods: A 26-mm Medtronic Evolut R valve was tested using a left heart simulator in aortic root models of different AA diameter (D): small (D = 23 mm), medium (D = 28 mm), and large (D = 34 mm) under physiological conditions. Measurements of pressure from upstream to downstream of the valve were performed using a catheter at small intervals to comprehensively assess pressure gradient and pressure recovery. Results: In the small AA, the measured peak and mean pressure gradient at vena contracta were 11.5 ± 0.5 mm Hg and 7.8 ± 0.4 mm Hg, respectively, which was higher (P < .01) compared with the medium (8.1 ± 0.4 mm Hg and 5.2 ± 0.4 mm Hg) and large AAs (7.4 ± 1.0 mm Hg and 5.4 ± 0.6 mm Hg). The net pressure gradient was lower for the case with the medium AA (4.1 ± 1.2 mm Hg) compared with the small AA (4.7 ± 0.8 mm Hg) and large AA (6.1 ± 1.4 mm Hg; P < .01). Conclusions: We have shown that small and large AAs can increase net pressure gradient, because of the direct interaction of the Medtronic Evolut R stent with the AA (in small AA) and introducing higher level of turbulence (in large AA). AA size might need to be considered in the selection of an appropriate device for transcatheter aortic valve replacement.

7.
JTCVS Open ; 10: 128-139, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36004225

RESUMEN

Objective: To evaluate the flow dynamics of self-expanding and balloon-expandable transcatheter aortic valves pertaining to turbulence and pressure recovery. Transcatheter aortic valves are characterized by different designs that have different valve performance and outcomes. Methods: Assessment of transcatheter aortic valves was performed using self-expanding devices (26-mm Evolut [Medtronic], 23-mm Allegra [New Valve Technologies], and small Acurate neo [Boston Scientific]) and a balloon-expandable device (23-mm Sapien 3 [Edwards Lifesciences]). Particle image velocimetry assessed the flow downstream. A Millar catheter was used for pressure recovery calculation. Velocity, Reynolds shear stresses, viscous shear stress, and pressure gradients were calculated. Results: The maximal velocity at peak systole obtained with the Evolut R, Sapien 3, Acurate neo, and Allegra was 2.12 ± 0.19 m/sec, 2.41 ± 0.06 m/sec, 2.99 ± 0.10 m/sec, and 2.45 ± 0.08 m/sec, respectively (P < .001). Leaflet oscillations with the flow were clear with the Evolut R and Acurate neo. The Allegra shows the minimal range of Reynolds shear stress magnitudes (up to 320 Pa), and Sapien 3 the maximal (up to 650 Pa). The Evolut had the smallest viscous shear stress magnitude range (up to 3.5 Pa), and the Sapien 3 the largest (up to 6.2 Pa). The largest pressure drop at the vena contracta occurred with the Acurate neo transcatheter aortic valve with a pressure gradient of 13.96 ± 1.35 mm Hg. In the recovery zone, the smallest pressure gradient was obtained with the Allegra (3.32 ± 0.94 mm Hg). Conclusions: Flow dynamics downstream of different transcatheter aortic valves vary significantly depending on the valve type, despite not having a general trend depending on whether or not valves are self-expanding or balloon-expandable. Deployment design did not have an influence on flow dynamics.

8.
Struct Heart ; 6(2): 100032, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37273734

RESUMEN

Transcatheter aortic valve replacement (TAVR) is a rapidly growing field enabling replacement of diseased aortic valves without the need for open heart surgery. However, due to the nature of the procedure and nonremoval of the diseased tissue, there are rates of complications ranging from tissue rupture and coronary obstruction to paravalvular leak, valve thrombosis, and permanent pacemaker implantation. In recent years, computational modeling has shown a great deal of promise in its capabilities to understand the biomechanical implications of TAVR as well as help preoperatively predict risks inherent to device-patient-specific anatomy biomechanical interaction. This includes intricate replication of stent and leaflet designs and tested and validated simulated deployments with structural and fluid mechanical simulations. This review outlines current biomechanical understanding of device-related complications from TAVR and related predictive strategies using computational modeling. An outlook on future modeling strategies highlighting reduced order modeling which could significantly reduce the high time and cost that are required for computational prediction of TAVR outcomes is presented in this review paper. A summary of current commercial/in-development software is presented in the final section.

9.
Ann Biomed Eng ; 50(7): 805-815, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35428905

RESUMEN

Accurate reconstruction of transcatheter aortic valve (TAV) geometries and other stented cardiac devices from computed tomography (CT) images is challenging, mainly associated with blooming artifacts caused by the metallic stents. In addition, bioprosthetic leaflets of TAVs are difficult to segment due to the low signal strengths of the tissues. This paper describes a method that exploits the known device geometry and uses an image registration-based reconstruction method to accurately recover the in vivo stent and leaflet geometries from patient-specific CT images. Error analyses have shown that the geometric error of the stent reconstruction is around 0.1mm, lower than 1/3 of the stent width or most of the CT scan resolutions. Moreover, the method only requires a few human inputs and is robust to input biases. The geometry and the residual stress of the leaflets can be subsequently computed using finite element analysis (FEA) with displacement boundary conditions derived from the registration. Finally, the stress distribution in self-expandable stents can be reasonably estimated by an FEA-based simulation. This method can be used in pre-surgical planning for TAV-in-TAV procedures or for in vivo assessment of surgical outcomes from post-procedural CT scans. It can also be used to reconstruct other medical devices such as coronary stents.


Asunto(s)
Estenosis de la Válvula Aórtica , Prótesis Valvulares Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Humanos , Diseño de Prótesis , Stents , Tomografía Computarizada por Rayos X
10.
R Soc Open Sci ; 6(10): 191387, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31824735

RESUMEN

Negatively buoyant freely swimming crustaceans such as krill must generate downward momentum in order to maintain their position in the water column. These animals use a drag-based propulsion strategy, where pairs of closely spaced swimming limbs are oscillated rhythmically from the tail to head. Each pair is oscillated with a phase delay relative to the neighbouring pair, resulting in a metachronal wave travelling in the direction of animal motion. It remains unclear how oscillations of limbs in the horizontal plane can generate vertical momentum. Using particle image velocimetry measurements on a robotic model, we observed that metachronal paddling with non-zero phase lag created geometries of adjacent paddles that promote the formation of counter-rotating vortices. The interaction of these vortices resulted in generating large-scale angled downward jets. Increasing phase lag resulted in more vertical orientation of the jet, and phase lags in the range used by Antarctic krill produced the most total momentum. Synchronous paddling produced lower total momentum when compared with metachronal paddling. Lowering Reynolds number by an order of magnitude below the range of adult krill (250-1000) showed diminished downward propagation of the jet and lower vertical momentum. Our findings show that metachronal paddling is capable of producing flows that can generate both lift (vertical) and thrust (horizontal) forces needed for fast forward swimming and hovering.

11.
Med Biol Eng Comput ; 55(8): 1147-1162, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27709408

RESUMEN

Many cardiovascular diseases are closely associated with hemodynamic parameters. The main purpose of this study is mimicking a physiological blood flow in stenotic arteries to provide an understanding of hemodynamic parameters. An experimental setup was designed to produce original pulsatile flow and measure pressure pulse waves through a compliant tube. Moreover, a numerical model considering fluid-solid interaction was developed to investigate wall shear stress and circumferential stress waves, based on the results of the experiments. Results described elevated mean pressure by increasing stenosis severity especially at the critical obstacle of 50 %, which the pressure rose significantly and raised up by 10 mm Hg that may cause damage in endothelial cells. Increasing in stenosis severity led to: more negative wall shear stress and more oscillation of shear stress at the post-stenotic region and also more absolute value of angular phase difference between wall shear stress and circumferential stress waves at the stenotic throat. All of the aforementioned parameters determinant the endothelial cell pathology in predication of potential sites of progression of atherosclerotic plaques. Therefore, results can be applied in study of plaque growth and mechanisms of arterial remodeling in atherosclerosis.


Asunto(s)
Arterias/fisiopatología , Aterosclerosis/fisiopatología , Velocidad del Flujo Sanguíneo , Presión Sanguínea , Modelos Cardiovasculares , Flujo Pulsátil , Animales , Simulación por Computador , Humanos , Oscilometría/métodos , Análisis de la Onda del Pulso/métodos , Resistencia al Corte , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA