Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Immunol ; 24(10): 1725-1734, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37735591

RESUMEN

The immune response to SARS-CoV-2 antigen after infection or vaccination is defined by the durable production of antibodies and T cells. Population-based monitoring typically focuses on antibody titer, but there is a need for improved characterization and quantification of T cell responses. Here, we used multimodal sequencing technologies to perform a longitudinal analysis of circulating human leukocytes collected before and after immunization with the mRNA vaccine BNT162b2. Our data indicated distinct subpopulations of CD8+ T cells, which reliably appeared 28 days after prime vaccination. Using a suite of cross-modality integration tools, we defined their transcriptome, accessible chromatin landscape and immunophenotype, and we identified unique biomarkers within each modality. We further showed that this vaccine-induced population was SARS-CoV-2 antigen-specific and capable of rapid clonal expansion. Moreover, we identified these CD8+ T cell populations in scRNA-seq datasets from COVID-19 patients and found that their relative frequency and differentiation outcomes were predictive of subsequent clinical outcomes.


Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2 , Vacuna BNT162 , COVID-19/prevención & control , Vacunación , Anticuerpos Antivirales
2.
Genome Res ; 30(12): 1781-1788, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33093069

RESUMEN

Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in spring 2020. The majority of cases had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that early transmission was most linked to cases from Europe. Our data are consistent with numerous seeds from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of genomic surveillance in addition to traditional epidemiological indicators.


Asunto(s)
COVID-19 , Genoma Viral , Pandemias , Filogenia , SARS-CoV-2/genética , Secuenciación Completa del Genoma , COVID-19/epidemiología , COVID-19/genética , COVID-19/transmisión , Femenino , Humanos , Masculino , Ciudad de Nueva York
3.
Ann Neurol ; 91(6): 782-795, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35289960

RESUMEN

OBJECTIVE: The objective of this study was to determine the impact of multiple sclerosis (MS) disease-modifying therapies (DMTs) on the development of cellular and humoral immunity to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection. METHODS: Patients with MS aged 18 to 60 years were evaluated for anti-nucleocapsid and anti-Spike receptor-binding domain (RBD) antibody with electro-chemiluminescence immunoassay; antibody responses to Spike protein, RBD, N-terminal domain with multiepitope bead-based immunoassays (MBI); live virus immunofluorescence-based microneutralization assay; T-cell responses to SARS-CoV-2 Spike using TruCulture enzyme-linked immunosorbent assay (ELISA); and IL-2 and IFNγ ELISpot assays. Assay results were compared by DMT class. Spearman correlation and multivariate analyses were performed to examine associations between immunologic responses and infection severity. RESULTS: Between January 6, 2021, and July 21, 2021, 389 patients with MS were recruited (mean age 40.3 years; 74% women; 62% non-White). Most common DMTs were ocrelizumab (OCR)-40%; natalizumab -17%, Sphingosine 1-phosphate receptor (S1P) modulators -12%; and 15% untreated. One hundred seventy-seven patients (46%) had laboratory evidence of SARS-CoV-2 infection; 130 had symptomatic infection, and 47 were asymptomatic. Antibody responses were markedly attenuated in OCR compared with other groups (p ≤0.0001). T-cell responses (IFNγ) were decreased in S1P (p = 0.03), increased in natalizumab (p <0.001), and similar in other DMTs, including OCR. Cellular and humoral responses were moderately correlated in both OCR (r = 0.45, p = 0.0002) and non-OCR (r = 0.64, p <0.0001). Immune responses did not differ by race/ethnicity. Coronavirus disease 2019 (COVID-19) clinical course was mostly non-severe and similar across DMTs; 7% (9/130) were hospitalized. INTERPRETATION: DMTs had differential effects on humoral and cellular immune responses to SARS-CoV-2 infection. Immune responses did not correlate with COVID-19 clinical severity in this relatively young and nondisabled group of patients with MS. ANN NEUROL 2022;91:782-795.


Asunto(s)
COVID-19 , Esclerosis Múltiple , Adulto , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Antivirales , Etnicidad , Femenino , Humanos , Inmunidad Celular , Inmunidad Humoral , Masculino , Natalizumab/uso terapéutico , SARS-CoV-2
4.
Transpl Infect Dis ; 25(6): e14122, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37707287

RESUMEN

BACKGROUND: Understanding immunogenicity and alloimmune risk following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in kidney transplant recipients is imperative to understanding the correlates of protection and to inform clinical guidelines. METHODS: We studied 50 kidney transplant recipients following SARS-CoV-2 vaccination and quantified their anti-spike protein antibody, donor-derived cell-free DNA (dd-cfDNA), gene expression profiling (GEP), and alloantibody formation. RESULTS: Participants were stratified using nucleocapsid testing as either SARS-CoV-2-naïve or experienced prior to vaccination. One of 34 (3%) SARS-CoV-2 naïve participants developed anti-spike protein antibodies. In contrast, the odds ratio for the association of a prior history of SARS-CoV-2 infection with vaccine response was 18.3 (95% confidence interval 3.2, 105.0, p < 0.01). Pre- and post-vaccination levels did not change for median dd-cfDNA (0.23% vs. 0.21% respectively, p = 0.13), GEP scores (9.85 vs. 10.4 respectively, p = 0.45), calculated panel reactive antibody, de-novo donor specific antibody status, or estimated glomerular filtration rate. CONCLUSIONS: SARS-CoV-2 vaccines do not appear to trigger alloimmunity in kidney transplant recipients. The degree of vaccine immunogenicity was associated most strongly with a prior history of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Ácidos Nucleicos Libres de Células , Trasplante de Riñón , Humanos , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Inmunidad , SARS-CoV-2 , Receptores de Trasplantes , Vacunación
5.
Mol Cell ; 57(6): 984-994, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25728768

RESUMEN

One of several roles of the Mycobacterium tuberculosis proteasome is to defend against host-produced nitric oxide (NO), a free radical that can damage numerous biological macromolecules. Mutations that inactivate proteasomal degradation in Mycobacterium tuberculosis result in bacteria that are hypersensitive to NO and attenuated for growth in vivo, but it was not known why. To elucidate the link between proteasome function, NO resistance, and pathogenesis, we screened for suppressors of NO hypersensitivity in a mycobacterial proteasome ATPase mutant and identified mutations in Rv1205. We determined that Rv1205 encodes a pupylated proteasome substrate. Rv1205 is a homolog of the plant enzyme LONELY GUY, which catalyzes the production of hormones called cytokinins. Remarkably, we report that an obligate human pathogen secretes several cytokinins. Finally, we determined that the Rv1205-dependent accumulation of cytokinin breakdown products is likely responsible for the sensitization of Mycobacterium tuberculosis proteasome-associated mutants to NO.


Asunto(s)
Aminohidrolasas/metabolismo , Citocininas/biosíntesis , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Aldehídos/metabolismo , Aminohidrolasas/genética , Animales , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Citocininas/metabolismo , Interacciones Huésped-Patógeno , Ratones Endogámicos C57BL , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Óxido Nítrico/farmacología , Supresión Genética
7.
J Bacteriol ; 201(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31285241

RESUMEN

The cell envelope of Mycobacterium tuberculosis is a key target for antibiotics, yet its assembly and maintenance remain incompletely understood. Here we report that Rv2700, a previously uncharacterized M. tuberculosis gene, contributes to envelope integrity. Specifically, an Rv2700 mutant strain had a decreased growth rate, increased sensitivity to antibiotics that target peptidoglycan crosslinking, and increased cell envelope permeability. We propose that Rv2700 be named a "cell envelope integrity" gene (cei). Importantly, a cei mutant had attenuated virulence in mice. Cei shares predicted structural homology with another M. tuberculosis protein, VirR (Rv0431), and we found that a virR mutant had growth rate, antibiotic sensitivity, and envelope permeability phenotypes similar to those of the cei mutant. Both Cei and VirR are predicted to consist of a transmembrane helix and an extracellular LytR_C domain. LytR_C domains have no known function, but they are also found in a family of proteins, the LytR-Cps2A-Psr (LCP) enzymes, that perform important cell envelope functions in a range of bacteria. In mycobacteria, LCP enzymes attach arabinogalactan to peptidoglycan, and mycobacterial LCP enzyme mutants have phenotypes similar to those of virR- and cei-deficient strains. Collectively, our results suggest that LytR_C domain proteins may contribute to the cell envelope functions performed by LCP proteins. This study provides a framework for further mechanistic investigations of LytR_C proteins and, more broadly, for advancing our understanding of the cell envelopes of mycobacteria and other medically and economically important genera.IMPORTANCEMycobacterium tuberculosis causes about 1.5 million deaths per year. The unique composition of the Mycobacterium tuberculosis cell envelope is required for this bacterium to cause disease and is the target for several critical antibiotics. By better understanding the mechanisms by which mycobacteria assemble and maintain their cell envelope, we might uncover new therapeutic targets. In this work, we show that a previously uncharacterized protein, Rv2700, is important for cell envelope integrity in Mycobacterium tuberculosis and that loss of Rv2700 attenuates virulence in mice. This family of proteins is found in a broad group of bacterial species, so our work provides a first insight into their potential functions in many species important to the environment, industry, and human health.


Asunto(s)
Pared Celular/metabolismo , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/microbiología , Factores de Virulencia/química , Factores de Virulencia/genética , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Femenino , Ratones , Viabilidad Microbiana/efectos de los fármacos , Modelos Moleculares , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Permeabilidad , Dominios Proteicos , Homología Estructural de Proteína , Factores de Virulencia/metabolismo
8.
J Bacteriol ; 199(7)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28096448

RESUMEN

Mycobacterium tuberculosis uses a proteasome to degrade proteins by both ATP-dependent and -independent pathways. While much has been learned about ATP-dependent degradation, relatively little is understood about the ATP-independent pathway, which is controlled by Mycobacterium tuberculosisproteasome accessory factor E (PafE). Recently, we found that a Mycobacterium tuberculosispafE mutant has slowed growth in vitro and is sensitive to killing by heat stress. However, we did not know if these phenotypes were caused by an inability to degrade the PafE-proteasome substrate HspR (heat shock protein repressor), an inability to degrade any damaged or misfolded proteins, or a defect in another protein quality control pathway. To address this question, we characterized pafE suppressor mutants that grew similarly to pafE+ bacteria under normal culture conditions. All but one suppressor mutant analyzed contained mutations that inactivated HspR function, demonstrating that the slowed growth and heat shock sensitivity of a pafE mutant were caused primarily by the inability of the proteasome to degrade HspR.IMPORTANCEMycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required for virulence. We recently discovered a proteasome cofactor, PafE, which is required for the normal growth, heat shock resistance, and full virulence of M. tuberculosis In this study, we demonstrate that PafE influences this phenotype primarily by promoting the expression of protein chaperone genes that are necessary for surviving proteotoxic stress.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas de Choque Térmico/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas Represoras/metabolismo , Proteínas Bacterianas/genética , Proteínas de Choque Térmico/genética , Mutación , Mycobacterium tuberculosis/genética , Proteínas Represoras/genética
10.
Subcell Biochem ; 66: 267-95, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23479444

RESUMEN

Proteasomes are ATP-dependent protein degradation machines present in all archaea and eukaryotes, and found in several bacterial species of the order Actinomycetales. Mycobacterium tuberculosis (Mtb), an Actinomycete pathogenic to humans, requires proteasome function to cause disease. In this chapter, we describe what is currently understood about the biochemistry of the Mtb proteasome and its role in virulence. The characterization of the Mtb proteasome has led to the discovery that proteins can be targeted for degradation by a small protein modifier in bacteria as they are in eukaryotes. Furthermore, the understanding of proteasome function in Mtb has helped reveal new insight into how the host battles infections.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitinas/metabolismo , Proteolisis
11.
Vaccine ; 42(14): 3365-3373, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38627145

RESUMEN

The head domain of the hemagglutinin of influenza viruses plays a dominant role in the antibody response due to the presence of immunodominant antigenic sites that are the main targets of host neutralizing antibodies. For the H1 hemagglutinin, five major antigenic sites defined as Sa, Sb, Ca1, Ca2, and Cb have been described. Although previous studies have focused on defining the hierarchy of the antigenic sites of the hemagglutinin in different human cohorts, it is still unclear if the immunodominance profile of the antigenic sites might change with the antibody levels of individuals or if other demographic factors (such as exposure history, sex, or age) could also influence the importance of the antigenic sites. The major antigenic sites of influenza viruses hemagglutinins are responsible for eliciting most of the hemagglutination inhibition antibodies in the host. To determine the antibody prevalence towards each major antigenic site, we evaluated the hemagglutination inhibition against a panel of mutant H1 viruses, each one lacking one of the "classic" antigenic sites. Our results showed that the individuals from the Stop Flu NYU cohort had an immunodominant response towards the sites Sb and Ca2 of H1 hemagglutinin. A simple logistic regression analysis of the immunodominance profiles and the hemagglutination inhibition titers displayed by each donor revealed that individuals with high hemagglutination inhibition titers against the wild-type influenza virus exhibited higher probabilities of displaying an immunodominance profile dominated by Sb, followed by Ca2 (Sb > Ca2 profile), while individuals with low hemagglutination inhibition titers presented a higher chance of displaying an immunodominance profile in which Sb and Ca2 presented the same level of immunodominance (Sb = Ca2 profile). Finally, while age exhibited an influence on the immunodominance of the antigenic sites, biological sex was not related to displaying a specific immunodominance profile.


Asunto(s)
Anticuerpos Antivirales , Pruebas de Inhibición de Hemaglutinación , Glicoproteínas Hemaglutininas del Virus de la Influenza , Epítopos Inmunodominantes , Gripe Humana , Humanos , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Femenino , Masculino , Adulto , Epítopos Inmunodominantes/inmunología , Persona de Mediana Edad , Gripe Humana/inmunología , Gripe Humana/prevención & control , Adulto Joven , Factores de Edad , Factores Sexuales , Adolescente , Estudios de Cohortes , Anciano , Antígenos Virales/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre
12.
Sci Immunol ; 9(96): eadj8526, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905326

RESUMEN

Memory CD4 T cells are critical to human immunity, yet it is unclear whether viral inflammation during memory formation has long-term consequences. Here, we compared transcriptional and epigenetic landscapes of Spike (S)-specific memory CD4 T cells in 24 individuals whose first exposure to S was via SARS-CoV-2 infection or mRNA vaccination. Nearly 2 years after memory formation, S-specific CD4 T cells established by infection remained enriched for transcripts related to cytotoxicity and for interferon-stimulated genes, likely because of a chromatin accessibility landscape altered by inflammation. Moreover, S-specific CD4 T cells primed by infection had reduced proliferative capacity in vitro relative to vaccine-primed cells. Furthermore, the transcriptional state of S-specific memory CD4 T cells was minimally altered by booster immunization and/or breakthrough infection. Thus, infection-associated inflammation durably imprints CD4 T cell memory, which affects the function of these cells and may have consequences for long-term immunity.


Asunto(s)
Linfocitos T CD4-Positivos , COVID-19 , Memoria Inmunológica , Inflamación , Células T de Memoria , SARS-CoV-2 , Humanos , COVID-19/inmunología , SARS-CoV-2/inmunología , Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica/inmunología , Inflamación/inmunología , Células T de Memoria/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Femenino , Masculino , Adulto , Vacunas contra la COVID-19/inmunología
13.
Artículo en Inglés | MEDLINE | ID: mdl-38713096

RESUMEN

OBJECTIVES: (1) To plot the trajectory of humoral and cellular immune responses to the primary (two-dose) COVID-19 mRNA series and the third/booster dose in B-cell-depleted multiple sclerosis (MS) patients up to 2 years post-vaccination; (2) to identify predictors of immune responses to vaccination; and (3) to assess the impact of intercurrent COVID-19 infections on SARS CoV-2-specific immunity. METHODS: Sixty ocrelizumab-treated MS patients were enrolled from NYU (New York) and University of Colorado (Anschutz) MS Centers. Samples were collected pre-vaccination, and then 4, 12, 24, and 48 weeks post-primary series, and 4, 12, 24, and 48 weeks post-booster. Binding anti-Spike antibody responses were assessed with multiplex bead-based immunoassay (MBI) and electrochemiluminescence (Elecsys®, Roche Diagnostics), and neutralizing antibody responses with live-virus immunofluorescence-based microneutralization assay. Spike-specific cellular responses were assessed with IFNγ/IL-2 ELISpot (Invitrogen) and, in a subset, by sequencing complementarity determining regions (CDR)-3 within T-cell receptors (Adaptive Biotechnologies). A linear mixed-effect model was used to compare antibody and cytokine levels across time points. Multivariate analyses identified predictors of immune responses. RESULTS: The primary vaccination induced an 11- to 208-fold increase in binding and neutralizing antibody levels and a 3- to 4-fold increase in IFNγ/IL-2 responses, followed by a modest decline in antibody but not cytokine responses. Booster dose induced a further 3- to 5-fold increase in binding antibodies and 4- to 5-fold increase in IFNγ/IL-2, which were maintained for up to 1 year. Infections had a variable impact on immunity. INTERPRETATION: Humoral and cellular benefits of COVID-19 vaccination in B-cell-depleted MS patients were sustained for up to 2 years when booster doses were administered.

14.
bioRxiv ; 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36747786

RESUMEN

The human immune response to SARS-CoV-2 antigen after infection or vaccination is defined by the durable production of antibodies and T cells. Population-based monitoring typically focuses on antibody titer, but there is a need for improved characterization and quantification of T cell responses. Here, we utilize multimodal sequencing technologies to perform a longitudinal analysis of circulating human leukocytes collected before and after BNT162b2 immunization. Our data reveal distinct subpopulations of CD8 + T cells which reliably appear 28 days after prime vaccination (7 days post boost). Using a suite of cross-modality integration tools, we define their transcriptome, accessible chromatin landscape, and immunophenotype, and identify unique biomarkers within each modality. By leveraging DNA-oligo-tagged peptide-MHC multimers and T cell receptor sequencing, we demonstrate that this vaccine-induced population is SARS-CoV-2 antigen-specific and capable of rapid clonal expansion. Moreover, we also identify these CD8 + populations in scRNA-seq datasets from COVID-19 patients and find that their relative frequency and differentiation outcomes are predictive of subsequent clinical outcomes. Our work contributes to our understanding of T cell immunity, and highlights the potential for integrative and multimodal analysis to characterize rare cell populations.

15.
Nat Protoc ; 18(12): 3821-3855, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37833423

RESUMEN

One of the main challenges in the fight against coronavirus disease 2019 (COVID-19) stems from the ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into multiple variants. To address this hurdle, research groups around the world have independently developed protocols to isolate these variants from clinical samples. These isolates are then used in translational and basic research-for example, in vaccine development, drug screening or characterizing SARS-CoV-2 biology and pathogenesis. However, over the course of the COVID-19 pandemic, we have learned that the introduction of artefacts during both in vitro isolation and subsequent propagation to virus stocks can lessen the validity and reproducibility of data. We propose a rigorous pipeline for the generation of high-quality SARS-CoV-2 variant clonal isolates that minimizes the acquisition of mutations and introduces stringent controls to detect them. Overall, the process includes eight stages: (i) cell maintenance, (ii) isolation of SARS-CoV-2 from clinical specimens, (iii) determination of infectious virus titers by plaque assay, (iv) clonal isolation by plaque purification, (v) whole-virus-genome deep-sequencing, (vi and vii) amplification of selected virus clones to master and working stocks and (viii) sucrose purification. This comprehensive protocol will enable researchers to generate reliable SARS-CoV-2 variant inoculates for in vitro and in vivo experimentation and will facilitate comparisons and collaborative work. Quality-controlled working stocks for most applications can be generated from acquired biorepository virus within 1 month. An additional 5-8 d are required when virus is isolated from clinical swab material, and another 6-7 d is needed for sucrose-purifying the stocks.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias/prevención & control , Reproducibilidad de los Resultados , Sacarosa
16.
EBioMedicine ; 97: 104843, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37866115

RESUMEN

BACKGROUND: High rates of vaccination and natural infection drive immunity and redirect selective viral adaptation. Updated boosters are installed to cope with drifted viruses, yet data on adaptive evolution under increasing immune pressure in a real-world situation are lacking. METHODS: Cross-sectional study to characterise SARS-CoV-2 mutational dynamics and selective adaptation over >1 year in relation to vaccine status, viral phylogenetics, and associated clinical and demographic variables. FINDINGS: The study of >5400 SARS-CoV-2 infections between July 2021 and August 2022 in metropolitan New York portrayed the evolutionary transition from Delta to Omicron BA.1-BA.5 variants. Booster vaccinations were implemented during the Delta wave, yet booster breakthrough infections and SARS-CoV-2 re-infections were almost exclusive to Omicron. In adjusted logistic regression analyses, BA.1, BA.2, and BA.5 had a significant growth advantage over co-occurring lineages in the boosted population, unlike BA.2.12.1 or BA.4. Selection pressure by booster shots translated into diffuse adaptive evolution in Delta spike, contrasting with strong, receptor-binding motif-focused adaptive evolution in BA.2-BA.5 spike (Fisher Exact tests; non-synonymous/synonymous mutation rates per site). Convergent evolution has become common in Omicron, engaging spike positions crucial for immune escape, receptor binding, or cleavage. INTERPRETATION: Booster shots are required to cope with gaps in immunity. Their discriminative immune pressure contributes to their effectiveness but also requires monitoring of selective viral adaptation processes. Omicron BA.2 and BA.5 had a selective advantage under booster vaccination pressure, contributing to the evolution of BA.2 and BA.5 sublineages and recombinant forms that predominate in 2023. FUNDING: The study was supported by NYU institutional funds and partly by the Cancer Center Support Grant P30CA016087 at the Laura and Isaac Perlmutter Cancer Center.


Asunto(s)
COVID-19 , Vacunas , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/prevención & control , Estudios Transversales , Infección Irruptiva , Anticuerpos Antivirales , Anticuerpos Neutralizantes
17.
bioRxiv ; 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36415470

RESUMEN

Adaptive immune responses are induced by vaccination and infection, yet little is known about how CD4+ T cell memory differs when primed in these two contexts. Notably, viral infection is generally associated with higher levels of systemic inflammation than is vaccination. To assess whether the inflammatory milieu at the time of CD4+ T cell priming has long-term effects on memory, we compared Spike-specific memory CD4+ T cells in 22 individuals around the time of the participants' third SARS-CoV-2 mRNA vaccination, with stratification by whether the participants' first exposure to Spike was via virus or mRNA vaccine. Multimodal single-cell profiling of Spike-specific CD4+ T cells revealed 755 differentially expressed genes that distinguished infection- and vaccine-primed memory CD4+ T cells. Spike-specific CD4+ T cells from infection-primed individuals had strong enrichment for cytotoxicity and interferon signaling genes, whereas Spike-specific CD4+ T cells from vaccine-primed individuals were enriched for proliferative pathways by gene set enrichment analysis. Moreover, Spike-specific memory CD4+ T cells established by infection had distinct epigenetic landscapes driven by enrichment of IRF-family transcription factors, relative to T cells established by mRNA vaccination. This transcriptional imprint was minimally altered following subsequent mRNA vaccination or breakthrough infection, reflecting the strong bias induced by the inflammatory environment during initial memory differentiation. Together, these data suggest that the inflammatory context during CD4+ T cell priming is durably imprinted in the memory state at transcriptional and epigenetic levels, which has implications for personalization of vaccination based on prior infection history.

18.
medRxiv ; 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-33907755

RESUMEN

SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell dataset of peripheral blood of patients with acute COVID-19 and of healthy volunteers before and after receiving the SARS-CoV-2 mRNA vaccine and booster. We compared host immune responses to the virus and vaccine using transcriptional profiling, coupled with B/T cell receptor repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. These findings were validated in an independent dataset. Analysis of B and T cell repertoires revealed that, while the majority of clonal lymphocytes in COVID-19 patients were effector cells, clonal expansion was more evident among circulating memory cells in vaccine recipients. Furthermore, while clonal αß T cell responses were observed in both COVID-19 patients and vaccine recipients, dramatic expansion of clonal γδT cells was found only in infected individuals. Our dataset enables comparative analyses of immune responses to infection versus vaccination, including clonal B and T cell responses. Integrating our data with publicly available datasets allowed us to validate our findings in larger cohorts. To our knowledge, this is the first dataset to include comprehensive profiling of longitudinal samples from healthy volunteers pre/post SARS-CoV-2 vaccine and booster.

19.
iScience ; 26(12): 108572, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38213787

RESUMEN

SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell analysis of blood from COVID-19 patients and healthy volunteers receiving the SARS-CoV-2 vaccine and booster. We profiled immune responses via transcriptional analysis and lymphocyte repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. B and T cell repertoire analysis revealed clonal expansion among effector cells in COVID-19 patients and memory cells in vaccine recipients. Furthermore, while clonal αß T cell responses were observed in both COVID-19 patients and vaccine recipients, expansion of clonal γδ T cells was found only in infected individuals. Our dataset enables side-by-side comparison of immune responses to infection versus vaccination, including clonal B and T cell responses. Our comparative analysis shows that vaccination induces a robust, durable clonal B and T cell responses, without the severe inflammation associated with infection.

20.
Cell Rep ; 38(2): 110237, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34982967

RESUMEN

Recently identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants Mu and C.1.2 have spike proteins with mutations that may confer resistance to natural and vaccine-elicited antibodies. Analysis of neutralizing antibody titers in the sera of vaccinated individuals without previous history of infection and from convalescent individuals show partial resistance of the viruses. In contrast, sera from individuals with a previous history of SARS-CoV-2 infection who were subsequently vaccinated neutralize variants with titers 4- to 11-fold higher, providing a rationale for vaccination of individuals with previous infection. The heavily mutated C.1.2 spike is the most antibody neutralization-resistant spike to date; however, the avidity of C.1.2 spike protein for angiotensin-converting enzyme 2 (ACE2) is low. This finding suggests that the virus evolved to escape the humoral response but has a decrease in fitness, suggesting that it may cause milder disease or be less transmissible. It may be difficult for the spike protein to evolve to escape neutralizing antibodies while maintaining high affinity for ACE2.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Células A549 , Línea Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Pruebas de Neutralización/métodos , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA