Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35216504

RESUMEN

Spinal cord injury (SCI) causes significant mortality and morbidity. Currently, no FDA-approved pharmacotherapy is available for treating SCI. Previously, low doses of estrogen (17ß-estradiol, E2) were shown to improve the post-injury outcome in a rat SCI model. However, the range of associated side effects makes advocating its therapeutic use difficult. Therefore, this study aimed at investigating the therapeutic efficacy of Premarin (PRM) in SCI. PRM is an FDA-approved E2 (10%) formulation, which is used for hormone replacement therapy with minimal risk of serious side effects. The effects of PRM on SCI were examined by magnetic resonance imaging, immunofluorescent staining, and western blot analysis in a rat model. SCI animals treated with vehicle alone, PRM, E2 receptor antagonist (ICI), or PRM + ICI were graded in a blinded way for locomotor function by using the Basso-Beattie-Bresnahan (BBB) locomotor scale. PRM treatment for 7 days decreased post-SCI lesion volume and attenuated neuronal cell death, inflammation, and axonal damage. PRM also altered the balance of pro- and anti-apoptotic proteins in favor of cell survival and improved angiogenesis and microvascular growth. Increased expression of estrogen receptors (ERs) ERα and ERß following PRM treatment and their inhibition by ER inhibitor indicated that the neuroprotection associated with PRM treatment might be E2-receptor mediated. The attenuation of glial activation with decreased inflammation and cell death, and increased angiogenesis by PRM led to improved functional outcome as determined by the BBB locomotor scale. These results suggest that PRM treatment has significant therapeutic implications for the improvement of post-SCI outcome.


Asunto(s)
Estrógenos Conjugados (USP)/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Modelos Animales de Enfermedad , Estradiol/metabolismo , Estrógenos/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Locomoción/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Enfermedades Neurodegenerativas/metabolismo , Neuroprotección/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo
2.
J Neurochem ; 139(2): 270-284, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27513991

RESUMEN

Optic neuritis (ON), inflammation of the optic nerve, is strongly associated with multiple sclerosis. ON pathology is characterized by attack of autoreactive T cells against optic nerve antigens, resulting in demyelination, death of retinal ganglion cells, and cumulative visual impairment. A model of experimental autoimmune encephalomyelitis (EAE) was utilized to study the onset and progression of ON and the neuroprotective efficacy of oral treatment with the calpain inhibitor SNJ 1945. EAE was actively induced in B10.PL mice with myelin basic protein on Days 0 and 2, and mice received twice daily oral dosing of SNJ 1945 from Day 9 until sacrificing (Day 26). Visual function was determined by electroretinogram recordings and daily measurement of optokinetic responses (OKR) to a changing pattern stimulus. Optic nerve and retinal histopathology was investigated by immunohistochemical and luxol fast blue staining. EAE mice manifested losses in OKR thresholds, a measurement of visual acuity, which began early in the disease course. There was a significant bias toward unilateral OKR impairment among EAE-ON eyes. Treatment with SNJ 1945, initiated after the onset of OKR threshold decline, improved visual acuity, pattern electroretinogram amplitudes, and paralysis, with attenuation of retinal ganglion cell death. Furthermore, calpain inhibition spared oligodendrocytes, prevented degradation of axonal neurofilament protein, and attenuated reactive astrocytosis. The trend of early, unilateral visual impairment in EAE-ON parallels the clinical presentation of ON exacerbations associated with multiple sclerosis. Calpain inhibition may represent an ideal candidate therapy for the preservation of vision in clinical ON. As in multiple sclerosis (MS) patients, optic neuritis (ON) and early, primarily monocular loss in spatial acuity is observed in a rodent model (EAE, experimental autoimmune encephalomyelitis). Daily oral treatment with the calpain inhibitor SNJ 1945 preserves visual acuity and preserves retinal ganglion cells (Brn3a, brain-specific homeobox/POU domain protein 3A) and their axons (MOSP, myelin oligodendrocyte-specific protein). Calpain inhibition may represent a candidate therapy for the preservation of vision in ON.


Asunto(s)
Calpaína/antagonistas & inhibidores , Carbamatos/farmacología , Carbamatos/uso terapéutico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Neuritis Óptica/tratamiento farmacológico , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Muerte Celular/efectos de los fármacos , Electrorretinografía/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/patología , Gliosis/prevención & control , Masculino , Ratones , Proteína Básica de Mielina/metabolismo , Nistagmo Optoquinético/efectos de los fármacos , Neuritis Óptica/etiología , Neuritis Óptica/fisiopatología , Estimulación Luminosa , Agudeza Visual/efectos de los fármacos
3.
J Neurochem ; 136(5): 1064-73, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26662641

RESUMEN

Spinal cord injury (SCI) is a debilitating condition with neurological deficits and loss of motor function that, depending on the severity, may lead to paralysis. The only treatment currently available is methylprednisolone, which is widely used and renders limited efficacy in SCI. Therefore, other therapeutic agents must be developed. The neuroprotective efficacy of estrogen in SCI was studied with a pre-clinical and pro-translational perspective. Acute SCI was induced in rats that were treated with low doses of estrogen (1, 5, 10, or 100 µg/kg) and compared with vehicle-treated injured rats or laminectomy control (sham) rats at 48 h post-SCI. Changes in gliosis and other pro-inflammatory responses, expression and activity of proteolytic enzymes (e.g., calpain, caspase-3), apoptosis of neurons in SCI, and cell death were monitored via Western blotting and immunohistochemistry. Negligible pro-inflammatory responses or proteolytic events and very low levels of neuronal death were found in sham rats. In contrast, vehicle-treated SCI rats showed profound pro-inflammatory responses with reactive gliosis, elevated expression and activity of calpain and caspase-3, elevated Bax:Bcl-2 ratio, and high levels of neuronal death in lesion and caudal regions of the injured spinal cord. Estrogen treatment at each dose reduced pro-inflammatory and proteolytic activities and protected neurons in the caudal penumbra in acute SCI. Estrogen treatment at 10 µg was found to be as effective as 100 µg in ameliorating the above parameters in injured animals. Results from this investigation indicated that estrogen at a low dose could be a promising therapeutic agent for treating acute SCI. Experimental studies with low dose estrogen therapy in acute spinal cord injury (SCI) demonstrated the potential for multi-active beneficial outcomes. Estrogen has been found to ameliorate several degenerative pathways following SCI. Thus, such early protective effects may even lead to functional recovery in long term injury. Studies are underway in chronic SCI in a follow up manuscript.


Asunto(s)
Estrógenos/administración & dosificación , Estrógenos/farmacología , Gliosis/tratamiento farmacológico , Neuronas/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Gliosis/patología , Masculino , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Ratas Sprague-Dawley , Médula Espinal/fisiopatología , Médula Espinal/cirugía , Traumatismos de la Médula Espinal/patología
4.
J Neurochem ; 137(4): 604-17, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26998684

RESUMEN

Spinal cord injury (SCI) causes loss of neurological function and, depending upon the severity of injury, may lead to paralysis. Currently, no FDA-approved pharmacotherapy is available for SCI. High-dose methylprednisolone is widely used, but this treatment is controversial. We have previously shown that low doses of estrogen reduces inflammation, attenuates cell death, and protects axon and myelin in SCI rats, but its effectiveness in recovery of function is not known. Therefore, the goal of this study was to investigate whether low doses of estrogen in post-SCI would reduce inflammation, protect cells and axons, and improve locomotor function during the chronic phase of injury. Injury (40 g.cm force) was induced at thoracic 10 in young adult male rats. Rats were treated with 10 or 100 µg 17ß-estradiol (estrogen) for 7 days following SCI and compared with vehicle-treated injury and laminectomy (sham) controls. Histology (H&E staining), immunohistofluorescence, Doppler laser technique, and Western blotting were used to monitor tissue integrity, gliosis, blood flow, angiogenesis, the expression of angiogenic factors, axonal degeneration, and locomotor function (Basso, Beattie, and Bresnahan rating) following injury. To assess the progression of recovery, rats were sacrificed at 7, 14, or 42 days post injury. A reduction in glial reactivity, attenuation of axonal and myelin damage, protection of cells, increased expression of angiogenic factors and microvessel growth, and improved locomotor function were found following estrogen treatment compared with vehicle-treated SCI rats. These results suggest that treatment with a very low dose of estrogen has significant therapeutic implications for the improvement of locomotor function in chronic SCI. Experimental studies with low dose estrogen therapy in chronic spinal cord injury (SCI) demonstrated the potential for multi-active beneficial outcomes that could ameliorate the degenerative pathways in chronic SCI as shown in (a). Furthermore, the alterations in local spinal blood flow could be significantly alleviated with low dose estrogen therapy. This therapy led to the preservation of the structural integrity of the spinal cord (b), which in turn led to the improved functional recovery as shown (c).


Asunto(s)
Inductores de la Angiogénesis/administración & dosificación , Estradiol/administración & dosificación , Locomoción/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Enfermedad Crónica , Estrógenos/administración & dosificación , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Locomoción/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
5.
Neurochem Res ; 41(1-2): 44-52, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26290268

RESUMEN

To clarify the molecular changes of sublesional muscle in the acute phase of spinal cord injury (SCI), a moderately severe injury (40 g cm) was induced in the spinal cord (T10 vertebral level) of adult male Sprague-Dawley rats (injury) and compared with sham (laminectomy only). Rats were sacrificed at 48 h (acute) post injury, and gastrocnemius muscles were excised. Morphological examination revealed no significant changes in the muscle fiber diameter between the sham and injury rats. Western blot analyses performed on the visibly red, central portion of the gastrocnemius muscle showed significantly higher expression of muscle specific E3 ubiquitin ligases (muscle ring finger-1 and muscle atrophy f-box) and significantly lower expression of phosphorylated Akt-1/2/3 in the injury group compared to the sham group. Cyclooxygenase 2, tumor necrosis factor alpha (TNF-α), and caspase-1, also had a significantly higher expression in the injury group; although, the mRNA levels of TNF-α and IL-6 did not show any significant difference between the sham and injury groups. These results suggest activation of protein degradation, deactivation of protein synthesis, and development of inflammatory reaction occurring in the sublesional muscles in the acute phase of SCI before overt muscle atrophy is seen.


Asunto(s)
Perfilación de la Expresión Génica , Músculo Esquelético/metabolismo , Traumatismos de la Médula Espinal/genética , Animales , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Músculo Esquelético/patología , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
6.
J Neurochem ; 130(2): 280-90, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24341912

RESUMEN

Complex pathophysiology of Parkinson's disease involves multiple CNS cell types. Degeneration in spinal cord neurons alongside brain has been shown to be involved in Parkinson's disease and evidenced in experimental parkinsonism. However, the mechanisms of these degenerative pathways are not well understood. To unravel these mechanisms SH-SY5Y neuroblastoma cells were differentiated into dopaminergic and cholinergic phenotypes, respectively, and used as cell culture model following exposure to two parkinsonian neurotoxicants MPP(+) and rotenone. SNJ-1945, a cell-permeable calpain inhibitor was tested for its neuroprotective efficacy. MPP(+) and rotenone dose-dependently elevated the levels of intracellular free Ca(2+) and induced a concomitant rise in the levels of active calpain. SNJ-1945 pre-treatment significantly protected cell viability and preserved cellular morphology following MPP(+) and rotenone exposure. The neurotoxicants elevated the levels of reactive oxygen species more profoundly in SH-SY5Y cells differentiated into dopaminergic phenotype, and this effect could be attenuated with SNJ-1945 pre-treatment. In contrast, significant levels of inflammatory mediators cyclooxygenase-2 (Cox-2 and cleaved p10 fragment of caspase-1) were up-regulated in the cholinergic phenotype, which could be dose-dependently attenuated by the calpain inhibitor. Overall, SNJ-1945 was efficacious against MPP(+) or rotenone-induced reactive oxygen species generation, inflammatory mediators, and proteolysis. A post-treatment regimen of SNJ-1945 was also examined in cells and partial protection was attained with calpain inhibitor administration 1-3 h after exposure to MPP(+) or rotenone. Taken together, these results indicate that calpain inhibition is a valid target for protection against parkinsonian neurotoxicants, and SNJ-1945 is an efficacious calpain inhibitor in this context. SH-SY5Y cells, differentiated as dopaminergic (TH positive) and cholinergic (ChAT positive), were used as in vitro models for Parkinson's disease. MPP+ and rotenone induced up-regulation of calpain, expression, and activity as a common mechanism of neurodegeneration. SNJ-1945, a novel calpain inhibitor, protected both the cell phenotypes against MPP+ and rotenone.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/antagonistas & inhibidores , Calpaína/antagonistas & inhibidores , Carbamatos/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Dopaminérgicos/toxicidad , Fármacos Neuroprotectores , Rotenona/antagonistas & inhibidores , Rotenona/toxicidad , Desacopladores/antagonistas & inhibidores , Desacopladores/toxicidad , Western Blotting , Calcio/metabolismo , Calpaína/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Humanos , Mediadores de Inflamación/metabolismo , Especies Reactivas de Oxígeno/metabolismo
7.
J Neurochem ; 127(6): 880-90, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23875735

RESUMEN

While multiple molecular mechanisms contribute to midbrain nigrostriatal dopaminergic degeneration in Parkinson's disease (PD), the mechanism of damage in non-dopaminergic sites within the central nervous system, including the spinal cord, is not well-understood. Thus, to understand the comprehensive pathophysiology underlying this devastating disease, postmortem spinal cord tissue samples (cervical, thoracic, and lumbar segments) from patients with PD were analyzed compared to age-matched normal subjects or Alzheimer's disease for selective molecular markers of neurodegeneration and inflammation. Distal axonal degeneration, relative abundance of both sensory and motor neuron death, selective loss of ChAT(+) motoneurons, reactive astrogliosis, microgliosis, increased cycloxygenase-2 (Cox-2) expression, and infiltration of T cells were observed in spinal cord of PD patients compared to normal subjects. Biochemical analyses of spinal cord tissues revealed associated inflammatory and proteolytic events (elevated levels of Cox-2, expression and activity of µ- and m-calpain, degradation of axonal neurofilament protein, and concomitantly low levels of endogenous inhibitor - calpastatin) in spinal cord of PD patients. Thus, pathologically upregulated calpain activity in spinal cords of patients with PD may contribute to inflammatory response-mediated neuronal death, leading to motor dysfunction. We proposed calpain over-activation and calpain-calpastatin dysregulation driving in a cascade of inflammatory responses (microglial activation and T cell infiltration) and degenerative pathways culminating in axonal degeneration and neuronal death in spinal cord of Parkinson's disease patients. This may be one of the crucial mechanisms in the degenerative process.


Asunto(s)
Calpaína/metabolismo , Degeneración Nerviosa/enzimología , Enfermedad de Parkinson/enzimología , Médula Espinal/enzimología , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/patología , Axones/patología , Proteínas de Unión al Calcio/metabolismo , Estudios de Casos y Controles , Muerte Celular , Proteínas del Citoesqueleto/metabolismo , Gliosis , Humanos , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/patología , Inflamación/inmunología , Esclerosis Múltiple/enzimología , Esclerosis Múltiple/patología , Degeneración Nerviosa/patología , Neuronas/patología , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/patología , Médula Espinal/inmunología , Médula Espinal/patología , Linfocitos T/inmunología
8.
Neurochem Res ; 38(8): 1734-41, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23690229

RESUMEN

Long-term exposure of ethanol (EtOH) alters the structure and function in brain and spinal cord. The present study addresses the mechanisms of EtOH-induced damaging effects on spinal motoneurons in vitro. Altered morphology and biochemical changes of such damage were demonstrated by in situ Wright staining and DNA ladder assay. EtOH at low to moderate (25-50 mM) concentrations induced damaging effects in the motoneuronal scaffold which involved activation of proteases like µ-calpain and caspase-3. Caspase-8 was seen only at higher (100 mM) EtOH concentration. Further, pretreatment with calpeptin, a potent calpain inhibitor, confirmed the involvement of active proteases in EtOH-induced damage to motoneurons. The lysosomal enzyme cathepsin D was also elevated in the motoneurons by EtOH, and this effect was significantly attenuated by inhibitor treatment. Overall, EtOH exposure rendered spinal motoneurons vulnerable to damage, and calpeptin provided protection, suggesting a critical role of calpain activation in EtOH-induced alterations in spinal motoneurons.


Asunto(s)
Calpaína/antagonistas & inhibidores , Etanol/farmacología , Neuronas Motoras/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , ADN/efectos de los fármacos , Activación Enzimática , Técnica del Anticuerpo Fluorescente , Humanos , Médula Espinal/citología
9.
J Neurochem ; 118(3): 326-38, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21615738

RESUMEN

Sporadic Parkinson's disease (PD) is now interpreted as a complex nervous system disorder in which the projection neurons are predominantly damaged. Such an interpretation is based on mapping of Lewy body and Lewy neurite pathology. Symptoms of the human disease are much widespread, which span from pre-clinical non-motor symptoms and clinical motor symptoms to cognitive discrepancies often seen in advanced stages. Existing symptomatic treatments further complicate with overt drug-irresponsive symptoms. PD is better understood by assimilation of extranigral degenerative pathways with nigrostriatal degenerative mechanisms. The term 'extranigral' appeared first in the 1990s to more rigorously define the nigral pathology by process of elimination. However, as clinicians progressively identified PD symptoms unresponsive to the gold standard drug l-DOPA, definitions of PD symptoms were redefined. Non-motor symptoms prodromal to motor symptoms just as pre-clinical to clinical, and conjointly emerged the concept of nigral versus extranigral degeneration in PD. While nigrostriatal degeneration is responsible for the neurobiological substrates of extrapyramydal motor features, extranigral degeneration corroborates a vast majority of other changes in discrete central, peripheral, and enteric nervous system nuclei, which together account for global symptoms of the human disease. As an extranigral site, spinal cord degeneration has also been implicated in PD progression. Interconnected to the upper CNS structures with descending and ascending pathways, spinal neurons participate in movement and sensory circuits, controlling movement and reflexes. Several clinical and in vivo studies have demonstrated signs of parkinsonism-related degenerative processes in spinal cord, which led to recent consideration of spinal cord as an area of potential therapeutic target. In a nutshell, this review explores how the existing animal models can actually reflect the human disease in order to facilitate PD research. Evolution of extranigral degeneration studies has been succinctly revisited, followed by a survey on animal models in light of recent findings in clinical PD. Together, it may help to develop effective therapeutic strategies for PD.


Asunto(s)
Antiparkinsonianos/farmacología , Sistema Nervioso Central/patología , Degeneración Nerviosa/patología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Animales , Modelos Animales de Enfermedad , Perros , Humanos , Ratones , Primates , Ratas , Médula Espinal/patología , Sustancia Negra/patología
10.
Neurochem Res ; 36(10): 1809-16, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21611834

RESUMEN

Spinal cord injury (SCI), depending on the severity of injury, leads to neurological dysfunction and paralysis. Methylprednisolone, the only currently available therapy renders limited protection in SCI. Therefore, other therapeutic agents must be tested to maximize neuroprotection and functional recovery. Previous data from our laboratory indicate that estrogen (17ß-estradiol) at a high dose may attenuate multiple damaging pathways involved in SCI and improve locomotor outcome. Since use of high dose estrogen may have detrimental side effects and therefore may never be used in the clinic, the current study investigated the efficacy of this steroid hormone at very low doses in SCI. In particular, we tested the impact of dosing (1-10 µg/kg), mode of delivery (intravenous vs. osmotic pump), and delay in estrogen application (15 min-4 h post-SCI) on microgliosis and neuronal death in acute SCI in rats. Treatment with 17ß-estradiol (1-10 µg/kg) significantly reduced microglial activation and also attenuated apoptosis of neurons compared to untreated SCI animals. The attenuation of cell death and inflammation by estrogen was observed regardless of mode and time of delivery following injury. These findings suggest estrogen as a potential agent for the treatment of individuals with SCI.


Asunto(s)
Estradiol/farmacología , Estradiol/uso terapéutico , Microglía/efectos de los fármacos , Degeneración Nerviosa/tratamiento farmacológico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Muerte Celular/efectos de los fármacos , Estrógenos/farmacología , Estrógenos/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/fisiopatología , Masculino , Metilprednisolona/farmacología , Metilprednisolona/uso terapéutico , Microglía/patología , Microglía/fisiología , Degeneración Nerviosa/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
11.
J Neurosci Res ; 88(8): 1738-50, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20091771

RESUMEN

Spinal cord injury (SCI) causes loss of neurological function and, depending on serverity, may cause paralysis. The only recommended pharmacotherapy for the treatment of SCI is high-dose methylprednisolone, and its use is controversial. We have previously shown that estrogen treatment attenuated cell death, axonal and myelin damage, calpain and caspase activities, and inflammation in acute SCI. The aim of this study was to examine whether posttreatment of SCI with estrogen would improve locomotor function by protecting cells and axons and reducing inflammation during the chronic phase following injury. Moderately severe injury (40 g . cm force) was induced in male Sprague-Dawley rats following laminectomy at T10. Three groups of animals were used: sham (laminectomy only), vehicle (dimethyl sulfoxide; DMSO)-treated injury group, and estrogen-treated injury group. Animals were treated with 4 mg/kg estrogen at 15 min and 24 hr postnjury, followed by 2 mg/kg estrogen daily for the next 5 days. After treatment, animals were sacrificed at the end of 6 weeks following injury, and 1-cm segments of spinal cord (lesion, rostral to lesion, and caudal to lesion) were removed for biochemical analyses. Estrogen treatment reduced COX-2 activity, blocked nuclear factor-kappaB translocation, prevented glial reactivity, attenuated neuron death, inhibited activation and activity of calpain and caspase-3, decreased axonal damage, reduced myelin loss in the lesion and penumbra, and improved locomotor function compared with vehicle-treated animals. These findings suggest that estrogen may be useful as a promising therapeutic agent for prevention of damage and improvement of locomotor function in chronic SCI. (c) 2010 Wiley-Liss, Inc.


Asunto(s)
Estrógenos/uso terapéutico , Actividad Motora/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/fisiopatología , Análisis de Varianza , Animales , Astrocitos/efectos de los fármacos , Axones/metabolismo , Axones/patología , Calpaína/metabolismo , Caspasa 3/metabolismo , Enfermedad Crónica , Colorimetría/métodos , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Flavoproteínas/metabolismo , Proteínas I-kappa B/metabolismo , Indoles , Macrófagos/efectos de los fármacos , Masculino , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Proteína X Asociada a bcl-2/metabolismo
12.
J Neurosci Res ; 88(11): 2398-408, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20623621

RESUMEN

Experimental autoimmune encephalomyelitis (EAE) is an animal model for studying multiple sclerosis (MS). Calpain has been implicated in many inflammatory and neurodegenerative events that lead to disability in EAE and MS. Thus, treating EAE animals with calpain inhibitors may block these events and ameliorate disability. To test this hypothesis, acute EAE Lewis rats were treated dose dependently with the calpain inhibitor calpeptin (50-250 microg/kg). Calpain activity, gliosis, loss of myelin, and axonal damage were attenuated by calpeptin therapy, leading to improved clinical scores. Neuronal and oligodendrocyte death were also decreased, with down-regulation of proapoptotic proteins, suggesting that decreases in cell death were due to decreases in the expression or activity of proapoptotic proteins. These results indicate that calpain inhibition may offer a novel therapeutic avenue for treating EAE and MS.


Asunto(s)
Axones/efectos de los fármacos , Axones/patología , Muerte Celular/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/farmacología , Dipéptidos/farmacología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/patología , Inflamación/prevención & control , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Animales , Western Blotting , Calpaína/antagonistas & inhibidores , Regulación hacia Abajo/fisiología , Técnica del Anticuerpo Fluorescente , Gliosis/inducido químicamente , Gliosis/patología , Etiquetado Corte-Fin in Situ , Inflamación/patología , Masculino , Proteínas del Tejido Nervioso/biosíntesis , Oligodendroglía/patología , Ratas , Ratas Endogámicas Lew , Médula Espinal/patología , Adhesión del Tejido
13.
Exp Neurol ; 330: 113315, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32302678

RESUMEN

Parkinson's disease (PD), a debilitating progressive degenerative movement disorder associated with loss of dopaminergic (DA) neurons in the substantia nigra (SN), afflicts approximately one million people in the U.S., including a significant number of Veterans. Disease characteristics include tremor, rigidity, postural instability, bradykinesia, and at a cellular level, glial cell activation and Lewy body inclusions in DA neurons. The most potent medical/surgical treatments do not ultimately prevent disease progression. Therefore, new therapies must be developed to halt progression of the disease. While the mechanisms of the degenerative process in PD remain elusive, chronic inflammation, a common factor in many neurodegenerative diseases, has been implicated with associated accumulation of toxic aggregated α-synuclein in neurons. Calpain, a calcium-activated cysteine neutral protease, plays a pivotal role in SN and spinal cord degeneration in PD via its role in α-synuclein aggregation, activation/migration of microglia and T cells, and upregulation of inflammatory processes. Here we report an increased expression of a subset of CD4+ T cells in rodent models of PD, including MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mice and DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride]/6-hydroxydopamine rats, which produced higher levels of perforin and granzyme B - typically found in cytotoxic T cells. Importantly, the CD4+ cytotoxic subtype was attenuated following calpain inhibition in MPTP mice, suggesting that calpain and this distinct CD4+ T cell subset may have critical roles in the inflammatory process, disease progression, and neurodegeneration in PD.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Calpaína/inmunología , Trastornos Parkinsonianos/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Calpaína/metabolismo , Modelos Animales de Enfermedad , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos Parkinsonianos/patología , Ratas , Ratas Long-Evans , Subgrupos de Linfocitos T/inmunología
14.
Neurotox Res ; 38(3): 640-649, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32761446

RESUMEN

Extra-nigral central nervous system sites have been found to be affected in Parkinson's disease (PD). In addition to substantia nigra, degeneration of spinal cord motor neurons may play a role in the motor symptoms of PD. To this end, hybrid rodent VSC 4.1 cells differentiated into motoneurons were used as a cell culture model following exposure to Parkinsonian neurotoxicant MPP+. SJA6017, a cell-permeable calpain inhibitor, was tested for its neuroprotective efficacy against the neurotoxicant. SJA6017 attenuated MPP+-induced rise in intracellular free Ca2+ and concomitant increases in the active form of calpain. It also significantly prevented increased levels of proteases and their activities, as shown by reduced levels of 145 kDa calpain-specific and 120 kDa caspase-3-specific spectrin breakdown products. Exposure to MPP+ elevated the levels of reactive oxygen species in VSC 4.1 motoneurons; this was significantly diminished with SJA6017. The motor proteins in spinal motoneurons, i.e., dynein and kinesin, were also impaired following exposure to MPP+ through calpain-mediated mechanisms; this process was partially ameliorated by SJA6017 pretreatment. Cytoprotection provided by SJA6017 against MPP+-induced damage to VSC 4.1 motoneurons was confirmed by restoration of membrane potential via whole-cell patch-clamp assay. This study demonstrates that calpain inhibition is a prospective route for neuroprotection in experimental PD; moreover, calpain inhibitor SJA6017 appears to be an effective neuroprotective agent against MPP+-induced damage in spinal motoneurons.


Asunto(s)
Calpaína/farmacología , Dipéptidos/farmacología , Glicoproteínas/farmacología , Neuronas Motoras/metabolismo , Animales , Apoptosis/efectos de los fármacos , Calpaína/metabolismo , Neuronas Motoras/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Especies Reactivas de Oxígeno/metabolismo , Médula Espinal/citología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo
15.
J Neurochem ; 110(6): 1895-907, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19627443

RESUMEN

Multiple sclerosis (MS) is a T-cell mediated autoimmune disease of the CNS, possessing both immune and neurodegenerative events that lead to disability. Adoptive transfer (AT) of myelin basic protein (MBP)-specific T cells into naïve female SJL/J mice results in a relapsing-remitting (RR) form of experimental autoimmune encephalomyelitis (EAE). Blocking the mechanisms by which MBP-specific T cells are activated before AT may help characterize the immune arm of MS and offer novel targets for therapy. One such target is calpain, which is involved in activation of T cells, migration of immune cells into the CNS, degradation of axonal and myelin proteins, and neuronal apoptosis. Thus, the hypothesis that inhibiting calpain in MBP-specific T cells would diminish their encephalitogenicity in RR-EAE mice was tested. Incubating MBP-specific T cells with the calpain inhibitor SJA6017 before AT markedly suppressed the ability of these T cells to induce clinical symptoms of RR-EAE. These reductions correlated with decreases in demyelination, inflammation, axonal damage, and loss of oligodendrocytes and neurons. Also, calpain : calpastatin ratio, production of truncated Bid, and Bax : Bcl-2 ratio, and activities of calpain and caspases, and internucleosomal DNA fragmentation were attenuated. Thus, these data suggest calpain as a promising target for treating EAE and MS.


Asunto(s)
Calpaína/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Proteína Básica de Mielina/biosíntesis , Linfocitos T/inmunología , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Compuestos de Boro/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calpaína/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Fragmentación del ADN/efectos de los fármacos , Enfermedades Desmielinizantes/diagnóstico , Enfermedades Desmielinizantes/etiología , Enfermedades Desmielinizantes/patología , Dipéptidos/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Etiquetado Corte-Fin in Situ/métodos , L-Lactato Deshidrogenasa/metabolismo , Ratones , Estadísticas no Paramétricas , Linfocitos T/efectos de los fármacos , Factores de Tiempo
16.
J Neurosci Res ; 87(3): 626-35, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18831007

RESUMEN

Massive T cell infiltration into the central nervous system is a hallmark of multiple sclerosis (MS) and its rodent model experimental autoimmune encephalomyelitis (EAE), resulting in the induction of many of the pathophysiological events that lead to neuroinflammation and neurodegeneration. Thus, blocking T cell migration into the central nervous system may reduce disease severity in MS and EAE. One potential target for reducing T cell migration is inhibition of the Ca(2+)-activated neutral protease calpain. Previous studies in other cell types have demonstrated that migration is reduced by incubation of cells with calpain inhibitors. Thus, we hypothesize that calpain inhibition will reduce migration of T cells in response to and toward the chemokine CCL2. To test this hypothesis, the intracellular free Ca(2+) levels in Jurkat E6-1 T cells was first measured by the fura-2 assay to assess whether the intracellular ion environment would support calpain activation. The intracellular free Ca(2+) levels were found to increase in response to CCL2. The cells were next treated with the calpain inhibitor calpeptin in a multiwelled Boyden chamber with CCL2 used as the chemoattractant. These studies demonstrate that inhibition of calpain with its inhibitor calpeptin produces a dose-dependent inhibition of chemotaxis. Calpain activity, as measured by live cell imaging, was also increased in response to CCL2, providing further evidence of its involvement in the process of chemotaxis and migration. These studies provide evidence for the involvement of calpain in the mechanisms of chemotaxis and warrants further exploration in MS patient and EAE animal samples.


Asunto(s)
Calpaína/metabolismo , Quimiotaxis de Leucocito/fisiología , Linfocitos T/fisiología , Calcio/metabolismo , Calpaína/antagonistas & inhibidores , Quimiocina CCL2/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Dipéptidos/farmacología , Relación Dosis-Respuesta a Droga , Fura-2 , Glicoproteínas/farmacología , Humanos , Células Jurkat , Transducción de Señal/fisiología , Linfocitos T/efectos de los fármacos
17.
J Pineal Res ; 47(2): 134-142, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19627458

RESUMEN

A vast literature extolling the benefits of melatonin has accumulated during the past four decades. Melatonin was previously considered of importance to seasonal reproduction and circadian rhythmicity. Currently, it appears to be a versatile anti-oxidative and anti-nitrosative agent, a molecule with immunomodulatory actions and profound oncostatic activity, and also to play a role as a potent neuroprotectant. Nowadays, melatonin is sold as a dietary supplement with differential availability as an over-the-counter aid in different countries. There is a widespread agreement that melatonin is nontoxic and safe considering its frequent, long-term usage by humans at both physiological and pharmacological doses with no reported side effects. Endeavors toward a designated drug status for melatonin may be enormously rewarding in clinics for treatment of several forms of neurotrauma where effective pharmacological intervention has not yet been attained. This mini review consolidates the data regarding the efficacy of melatonin as an unique neuroprotective agent in traumatic central nervous system (CNS) injuries. Well-documented actions of melatonin in combating traumatic CNS damage are compiled from various clinical and experimental studies. Research on traumatic brain injury and ischemia/reperfusion are briefly outlined here as they have been recently reviewed elsewhere, whereas the studies on different animal models of the experimental spinal cord injury have been extensively covered in this mini review for the first time.


Asunto(s)
Sistema Nervioso Central/lesiones , Melatonina/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Traumatismos del Sistema Nervioso/tratamiento farmacológico , Animales , Humanos
18.
J Neurochem ; 104(5): 1309-20, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18036149

RESUMEN

We examined neurodegeneration in spinal cord (SC) and role of such extra-nigral degeneration in MPTP-induced experimental parkinsonism in C57BL/6N mice. HPLC-photodiode array analysis confirmed presence of the active neurotoxin MPP+ in SC after single injection of MPTP (25 mg/kg, i.p.). Mitochondrial enzyme monoamine oxidase-B (MAO-B) responsible for in vivo conversion of MPTP to MPP+ was inhibited in SC by pre-treatment with l-deprenyl, a specific inhibitor of MAO-B. Besides in vitro conversion of MPTP to MPP+ occurred by SC mitochondrial preparation, which was inhibited by l-deprenyl implicating SC as a specific target of MPTP-neurotoxicity. Double immunofluorescent labeling and spectrofluorimetric assay via kynuramine oxidation showed MAO-B expression and activity in SC neurons. Localization of dopamine transporter immunoreactivity in SC along with specific uptake of (3)H-MPP+ by SC synaptosomal preparation further confirmed SC as target of MPTP-neurotoxicity. Compared with control, increased neuronal death on the seventh day in SC of mice injected with MPTP (2 x 25 mg/kg, at 6 h interval) strongly suggested SC degeneration in pre-symptomatic phase of MPTP-induced experimental parkinsonism. Such extra-nigral neurodegeneration in Parkinson's disease indicated novel molecular mechanism preceding nigrostriatal degeneration and suggested designing broad therapeutic intervention for this complex movement disorder.


Asunto(s)
Intoxicación por MPTP/metabolismo , Degeneración Nerviosa/metabolismo , Enfermedad de Parkinson Secundaria/metabolismo , Enfermedades de la Médula Espinal/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Cuerpo Estriado/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Vértebras Lumbares , Intoxicación por MPTP/inducido químicamente , Intoxicación por MPTP/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/etiología , Enfermedad de Parkinson Secundaria/complicaciones , Enfermedades de la Médula Espinal/inducido químicamente , Enfermedades de la Médula Espinal/etiología
19.
J Pineal Res ; 44(4): 348-57, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18086148

RESUMEN

Multiple investigations in vivo have shown that melatonin (MEL) has a neuroprotective effect in the treatment of spinal cord injury (SCI). This study investigates the role of MEL as an intervening agent for ameliorating Ca(2+)-mediated events, including activation of calpain, following its administration to rats sustaining experimental SCI. Calpain, a Ca(2+)-dependent neutral protease, is known to be involved in the pathogenesis of SCI. Rats were injured using a standard weight-drop method that induced a moderately severe injury (40 g.cm force) at T10. Sham controls received laminectomy only. Injured animals were given either 45 mg/kg MEL or vehicle at 15 min post-injury by intraperitoneal injection. At 48 hr post-injury, spinal cord (SC) samples were collected. Immunofluorescent labelings were used to identify calpain expression in specific cell types, such as neurons, glia, or macrophages. Combination of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) and double immunofluorescent labelings was used to identify apoptosis in specific cells in the SC. The effect of MEL on axonal damage was also investigated using antibody specific for dephosphorylated neurofilament protein (dNFP). Treatment of SCI animals with MEL attenuated calpain expression, inflammation, axonal damage (dNFP), and neuronal death, indicating that MEL provided neuroprotective effect in SCI. Further, expression and activity of calpain and caspse-3 were examined by Western blotting. The results indicated a significant decrease in expression and activity of calpain and caspse-3 in SCI animals after treatment with MEL. Taken together, this study strongly suggested that MEL could be an effective neuroprotective agent for treatment of SCI.


Asunto(s)
Apoptosis/efectos de los fármacos , Axones/metabolismo , Calpaína/biosíntesis , Melatonina/farmacología , Fármacos Neuroprotectores/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Axones/patología , Calcio/metabolismo , Caspasa 3/biosíntesis , Depresores del Sistema Nervioso Central/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Etiquetado Corte-Fin in Situ , Inflamación/tratamiento farmacológico , Inflamación/enzimología , Inflamación/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/enzimología , Traumatismos de la Médula Espinal/patología , Factores de Tiempo
20.
Neural Regen Res ; 12(2): 266, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28400809

RESUMEN

[This corrects the article on p. 1418 in vol. 11, PMID: 27857741.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA