Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(14): e2115032119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344432

RESUMEN

Cell-to-cell heterogeneity in gene expression and growth can have critical functional consequences, such as determining whether individual bacteria survive or die following stress. Although phenotypic variability is well documented, the dynamics that underlie it are often unknown. This information is important because dramatically different outcomes can arise from gradual versus rapid changes in expression and growth. Using single-cell time-lapse microscopy, we measured the temporal expression of a suite of stress-response reporters in Escherichia coli, while simultaneously monitoring growth rate. In conditions without stress, we found several examples of pulsatile expression. Single-cell growth rates were often anticorrelated with reporter levels, with changes in growth preceding changes in expression. These dynamics have functional consequences, which we demonstrate by measuring survival after challenging cells with the antibiotic ciprofloxacin. Our results suggest that fluctuations in both gene expression and growth dynamics in stress-response networks have direct consequences on survival.


Asunto(s)
Escherichia coli , Regulación Bacteriana de la Expresión Génica , Estrés Fisiológico , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Expresión Génica , Fenotipo , Análisis de la Célula Individual , Estrés Fisiológico/genética
2.
Proc Natl Acad Sci U S A ; 117(45): 28221-28231, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33106418

RESUMEN

Conventional models of genome evolution are centered around the principle that mutations form independently of each other and build up slowly over time. We characterized the occurrence of bursts of genome-wide loss-of-heterozygosity (LOH) in Saccharomyces cerevisiae, providing support for an additional nonindependent and faster mode of mutation accumulation. We initially characterized a yeast clone isolated for carrying an LOH event at a specific chromosome site, and surprisingly found that it also carried multiple unselected rearrangements elsewhere in its genome. Whole-genome analysis of over 100 additional clones selected for carrying primary LOH tracts revealed that they too contained unselected structural alterations more often than control clones obtained without any selection. We also measured the rates of coincident LOH at two different chromosomes and found that double LOH formed at rates 14- to 150-fold higher than expected if the two underlying single LOH events occurred independently of each other. These results were consistent across different strain backgrounds and in mutants incapable of entering meiosis. Our results indicate that a subset of mitotic cells within a population can experience discrete episodes of systemic genomic instability, when the entire genome becomes vulnerable and multiple chromosomal alterations can form over a narrow time window. They are reminiscent of early reports from the classic yeast genetics literature, as well as recent studies in humans, both in cancer and genomic disorder contexts. The experimental model we describe provides a system to further dissect the fundamental biological processes responsible for punctuated bursts of structural genomic variation.


Asunto(s)
Genoma Fúngico/genética , Inestabilidad Genómica/genética , Saccharomyces cerevisiae/genética , Cromosomas Fúngicos/genética , Pérdida de Heterocigocidad/genética , Mutación/genética , Recombinación Genética/genética
3.
Curr Genet ; 67(1): 57-63, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33159552

RESUMEN

The rates and patterns by which cells acquire mutations profoundly shape their evolutionary trajectories and phenotypic potential. Conventional models maintain that mutations are acquired independently of one another over many successive generations. Yet, recent evidence suggests that cells can also experience mutagenic processes that drive rapid genome evolution. One such process manifests as punctuated bursts of genomic instability, in which multiple new mutations are acquired simultaneously during transient episodes of genomic instability. This mutational mode is reminiscent of the theory of punctuated equilibrium, proposed by Stephen Jay Gould and Niles Eldredge in 1972 to explain the burst-like appearance of new species in the fossil record. In this review, we survey the dominant and emerging theories of eukaryotic genome evolution with a particular focus on the growing body of work that substantiates the existence and importance of punctuated bursts of genomic instability. In addition, we summarize and discuss two recent studies from our own group, the results of which indicate that punctuated bursts systemic genomic instability (SGI) can rapidly reconfigure the structure of the diploid genome of Saccharomyces cerevisiae.


Asunto(s)
Evolución Biológica , Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Inestabilidad Genómica/genética
4.
Methods Mol Biol ; 2153: 201-219, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32840782

RESUMEN

DNA break lesions pose a serious threat to the integrity of the genome. Eukaryotic cells can repair these lesions using the homologous recombination pathway that guides the repair reaction by using a homologous DNA template. The budding yeast Saccharomyces cerevisiae is an excellent model system with which to study this repair mechanism and the resulting patterns of genomic change resulting from it. In this chapter, we describe an approach that utilizes whole-genome sequencing data to support the analysis of tracts of loss-of-heterozygosity (LOH) that can arise from mitotic recombination in the context of the entire diploid yeast genome. The workflow and the discussion in this chapter are intended to enable classically trained molecular biologists and geneticists with limited experience in computational methods to conceptually understand and execute the steps of genome-wide LOH analysis as well as to adapt and apply them to their own specific studies and experimental models.


Asunto(s)
Cromosomas Fúngicos/genética , Biología Computacional/métodos , Recombinación Genética , Saccharomyces cerevisiae/genética , Pérdida de Heterocigocidad , Mitosis , Secuenciación Completa del Genoma , Flujo de Trabajo
5.
Front Genet ; 10: 782, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572430

RESUMEN

Abundant genomic heterozygosity can be found in wild strains of the budding yeast Saccharomyces cerevisiae isolated from industrial and clinical environments. The extent to which heterozygosity influences the phenotypes of these isolates is not fully understood. One such case is the PE-2/JAY270 strain, a natural hybrid widely adopted by sugarcane bioethanol distilleries for its ability to thrive under harsh biotic and abiotic stresses during industrial scale fermentation, however, it is not known whether or how the heterozygous configuration of the JAY270 genome contributes to its many desirable traits. In this study, we took a step toward exploring this question by conducting an initial functional characterization of JAY270's heteroalleles. We manipulated the abundance and distribution of heterozygous alleles through inbreeding and targeted uniparental disomy (UPD). Unique combinations of homozygous alleles in each inbred strain revealed wide phenotypic variation for at least two important industrial traits: Heat stress tolerance and competitive growth. Quantitative trait loci analyses allowed the identification of broad genomic regions where genetic polymorphisms potentially impacted these traits, and there was no overlap between the loci associated with each. In addition, we adapted an approach to induce bidirectional UPD of three targeted pairs of chromosomes (IV, XIV, and XV), while heterozygosity was maintained elsewhere in the genome. In most cases UPD led to detectable phenotypic alterations, often in opposite directions between the two homozygous haplotypes in each UPD pair. Our results showed that both widespread and regional homozygosity could uncover cryptic phenotypic variation supported by the heteroalleles residing in the JAY270 genome. Interestingly, we characterized multiple examples of inbred and UPD strains that displayed heat tolerance or competitive growth phenotypes that were superior to their heterozygous parent. However, we propose that homozygosity for those regions may be associated with a decrease in overall fitness in the complex and dynamic distillery environment, and that may have contributed to slowing down the erosion of heterozygosity from the JAY270 genome. This study also laid a foundation for approaches that can be expanded to the identification of specific alleles of interest for industrial applications in this and other hybrid yeast strains.

6.
G3 (Bethesda) ; 8(11): 3703-3713, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30254181

RESUMEN

The Saccharomyces cerevisiae strain JAY270/PE2 is a highly efficient biocatalyst used in the production of bioethanol from sugarcane feedstock. This strain is heterothallic and diploid, and its genome is characterized by abundant structural and nucleotide polymorphisms between homologous chromosomes. One of the reasons it is favored by many distilleries is that its cells do not normally aggregate, a trait that facilitates cell recycling during batch-fed fermentations. However, long-term propagation makes the yeast population vulnerable to the effects of genomic instability, which may trigger the appearance of undesirable phenotypes such as cellular aggregation. In pure cultures of JAY270, we identified the recurrent appearance of mutants displaying a mother-daughter cell separation defect resulting in rough colonies in agar media and fast sedimentation in liquid culture. We investigated the genetic basis of the colony morphology phenotype and found that JAY270 is heterozygous for a frameshift mutation in the ACE2 gene (ACE2/ace2-A7), which encodes a transcriptional regulator of mother-daughter cell separation. All spontaneous rough colony JAY270-derived isolates analyzed carried copy-neutral loss-of-heterozygosity (LOH) at the region of chromosome XII where ACE2 is located (ace2-A7/ace2-A7). We specifically measured LOH rates at the ACE2 locus, and at three additional chromosomal regions in JAY270 and in a conventional homozygous diploid laboratory strain. This direct comparison showed that LOH rates at all sites were quite similar between the two strain backgrounds. In this case study of genomic instability in an industrial strain, we showed that the JAY270 genome is dynamic and that structural changes to its chromosomes can lead to new phenotypes. However, our analysis also indicated that the inherent level of genomic instability in this industrial strain is normal relative to a laboratory strain. Our work provides an important frame of reference to contextualize the interpretation of instability processes observed in the complex genomes of industrial yeast strains.


Asunto(s)
Inestabilidad Genómica , Saccharomyces cerevisiae/fisiología , Microbiología Industrial , Pérdida de Heterocigocidad , Fenotipo , Proteínas de Saccharomyces cerevisiae/genética
7.
DNA Repair (Amst) ; 52: 110-114, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28268090

RESUMEN

Cells carrying deletions of genes encoding H-class ribonucleases display elevated rates of chromosome instability. The role of these enzymes is to remove RNA-DNA associations including persistent mRNA-DNA hybrids (R-loops) formed during transcription, and ribonucleotides incorporated into DNA during replication. RNases H1 and H2 can degrade the RNA component of R-loops, but only RNase H2 can initiate accurate ribonucleotide excision repair (RER). In order to examine the specific contributions of these activities to chromosome stability, we measured rates of loss-of-heterozygosity (LOH) in diploid Saccharomyces cerevisiae yeast strains carrying the rnh201-RED separation-of-function allele, encoding a version of RNase H2 that is RER-defective, but partly retains its other activity. The LOH rate in rnh201-RED was intermediate between RNH201 and rnh201Δ. In strains carrying a mutant version of DNA polymerase ε (pol2-M644G) that incorporates more ribonucleotides than normal, the LOH rate in rnh201-RED was as high as the rate measured in rnh201Δ. Topoisomerase 1 cleavage at sites of ribonucleotide incorporation has been recently shown to produce DNA double strand breaks. Accordingly, in both the POL2 and pol2-M644G backgrounds, the LOH elevation in rnh201-RED was suppressed by top1Δ. In contrast, in strains that incorporate fewer ribonucleotides (pol2-M644L) the LOH rate in rnh201-RED was low and independent of topoisomerase 1. These results suggest that both R-loop removal and RER contribute substantially to chromosome stability, and that their relative contributions may be variable across different regions of the genome. In this scenario, a prominent contribution of R-loop removal may be expected at highly transcribed regions, whereas RER may play a greater role at hotspots of ribonucleotide incorporation.


Asunto(s)
Inestabilidad Cromosómica , Reparación del ADN , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo , Ribonucleótidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ADN Polimerasa II/metabolismo , Replicación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , ADN de Hongos/metabolismo , Pérdida de Heterocigocidad , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA