Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Eur J Clin Invest ; 54(6): e14181, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38361320

RESUMEN

BACKGROUND: Successful recanalization does not lead to complete tissue reperfusion in a considerable percentage of ischemic stroke patients. This study aimed to identify biomarkers associated with futile recanalization. Leukoaraiosis predicts poor outcomes of this phenomenon. Soluble tumour necrosis factor-like weak inducer of apoptosis (sTWEAK), which is associated with leukoaraiosis degrees, could be a potential biomarker. METHODS: This study includes two cohorts of ischemic stroke patients in a multicentre retrospective observational study. Effective reperfusion, defined as a reduction of ≥8 points in the National Institutes of Health Stroke Scale (NIHSS) within the first 24 h, was used as a clinical marker of effective reperfusion. RESULTS: In the first cohort study, female sex, age, and high NIHSS at admission (44.7% vs. 81.1%, 71.3 ± 13.7 vs. 81.1 ± 6.7; 16 [13, 21] vs. 23 [17, 28] respectively; p < .0001) were confirmed as predictors of futile recanalization. ROC curve analysis showed that leukocyte levels (sensitivity of 99%, specificity of 55%) and sTWEAK level (sensitivity of 92%, specificity of 88%) can discriminate between poor and good outcomes. Both biomarkers simultaneously are higher associated with outcome after effective reperfusion (OR: 2.17; CI 95% 1.63-4.19; p < .0001) than individually (leukocytes OR: 1.38; CI 95% 1.00-1.64, p = .042; sTWEAK OR: 1.00; C I95% 1.00-1.01, p = .019). These results were validated using a second cohort, where leukocytes and sTWEAK showed a sensitivity of 100% and specificity of 66.7% and 75% respectively. CONCLUSIONS: Leukocyte and sTWEAK could be biomarkers of reperfusion failure and subsequent poor outcomes. Further studies will be necessary to explore its role in reperfusion processes.


Asunto(s)
Biomarcadores , Citocina TWEAK , Inutilidad Médica , Reperfusión , Humanos , Femenino , Masculino , Biomarcadores/sangre , Biomarcadores/metabolismo , Anciano , Estudios Retrospectivos , Persona de Mediana Edad , Citocina TWEAK/metabolismo , Anciano de 80 o más Años , Accidente Cerebrovascular Isquémico , Leucoaraiosis , Recuento de Leucocitos , Curva ROC , Estudios de Cohortes
2.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928260

RESUMEN

Glutamate grabbers, such as glutamate oxaloacetate transaminase (GOT), have been proposed to prevent excitotoxicity secondary to high glutamate levels in stroke patients. However, the efficacy of blood glutamate grabbing by GOT could be dependent on the extent and severity of the disruption of the blood-brain barrier (BBB). Our purpose was to analyze the relationship between GOT and glutamate concentration with the patient's functional status differentially according to BBB serum markers (soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) and leukoaraiosis based on neuroimaging). This retrospective observational study includes 906 ischemic stroke patients. We studied the presence of leukoaraiosis and the serum levels of glutamate, GOT, and sTWEAK in blood samples. Functional outcome was assessed using the modified Rankin Scale (mRS) at 3 months. A significant negative correlation between GOT and glutamate levels at admission was shown in those patients with sTWEAK levels > 2900 pg/mL (Pearson's correlation coefficient: -0.249; p < 0.0001). This correlation was also observed in patients with and without leukoaraiosis (Pearson's correlation coefficients: -0.299; p < 0.001 vs. -0.116; p = 0.024). The logistic regression model confirmed the association of higher levels of GOT with lower odds of poor outcome at 3 months when sTWEAK levels were >2900 pg/mL (OR: 0.41; CI 95%: 0.28-0.68; p < 0.0001) or with leukoaraiosis (OR: 0.75; CI 95%: 0.69-0.82; p < 0.0001). GOT levels are associated with glutamate levels and functional outcomes at 3 months, but only in those patients with leukoaraiosis and elevated sTWEAK levels. Consequently, therapies targeting glutamate grabbing might be more effective in patients with BBB dysfunction.


Asunto(s)
Ácido Glutámico , Accidente Cerebrovascular Isquémico , Humanos , Ácido Glutámico/sangre , Femenino , Masculino , Anciano , Accidente Cerebrovascular Isquémico/sangre , Persona de Mediana Edad , Estudios Retrospectivos , Medicina de Precisión/métodos , Biomarcadores/sangre , Aspartato Aminotransferasas/sangre , Leucoaraiosis/sangre , Barrera Hematoencefálica/metabolismo , Citocina TWEAK/sangre , Anciano de 80 o más Años , Isquemia Encefálica/sangre
3.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835156

RESUMEN

The circadian system regulates numerous physiological variables, including body temperature. Additionally, a circadian patter has been described in stroke onset. Considering this, we hypothesised that the chronobiology of temperature may have an impact on stroke onset and functional outcomes. We also studied the variation of blood biomarkers according to stroke onset time. This is a retrospective observational study. Of the patients included, 2763 had a stroke between midnight and 8:00 h; 1571 between 8:00-14:00 h; and 655 between 14:00 h and midnight. Axillary temperature was measured at admission. At this time, blood samples were collected for biomarker analysis (TNF-α, IL-1ß, IL-6, IL-10, and glutamate). Temperature was higher in patients admitted from 8:00 h to midnight (p < 0.0001). However, the percentage of poor outcome at 3 months was highest in patients from midnight to 8:00 h (57.7%, p < 0.001). The association between temperature and mortality was highest during night time (OR: 2.79; CI 95%: 2.36-3.28; p < 0.001). These patients exhibited high glutamate (220.2 ± 140.2 µM), IL-6 (32.8 ± 14.3 pg/mL) and low IL-10 (9.7 ± 14.3 pg/mL) levels. Therefore, temperature chronobiology could have a significant impact on stroke onset and functional outcome. Superficial body hyperthermia during sleep seems to be more dangerous than during wakefulness. Further studies will be necessary to confirm our data.


Asunto(s)
Temperatura Corporal , Ritmo Circadiano , Interleucina-10 , Accidente Cerebrovascular , Humanos , Ritmo Circadiano/fisiología , Glutamatos , Interleucina-6 , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/etiología , Biomarcadores
4.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36012745

RESUMEN

Blood-brain barrier (BBB) integrity is essential to maintaining brain health. Aging-related alterations could lead to chronic progressive leakiness of the BBB, which is directly correlated with cerebrovascular diseases. Indeed, the BBB breakdown during acute ischemic stroke is critical. It remains unclear, however, whether BBB dysfunction is one of the first events that leads to brain disease or a down-stream consequence. This review will focus on the BBB dysfunction associated with cerebrovascular disease. An added difficulty is its association with the deleterious or reparative effect, which depends on the stroke phase. We will first outline the BBB structure and function. Then, we will focus on the spatiotemporal chronic, slow, and progressive BBB alteration related to ischemic stroke. Finally, we will propose a new perspective on preventive therapeutic strategies associated with brain aging based on targeting specific components of the BBB. Understanding BBB age-evolutions will be beneficial for new drug development and the identification of the best performance window times. This could have a direct impact on clinical translation and personalised medicine.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Humanos , Accidente Cerebrovascular/complicaciones
5.
Ther Adv Neurol Disord ; 17: 17562864241243274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827243

RESUMEN

Background: Cerebral small vessel disease is the most common cause of lacunar strokes (LS). Understanding LS pathogenesis is vital for predicting disease severity, prognosis, and developing therapies. Objectives: To research molecular profiles that differentiate LS in deep brain structures from those in subcortical white matter. Design: Prospective case-control study involving 120 patients with imaging-confirmed LS and a 120 control group. Methods: We examined the relationship between Alzheimer's disease biomarkers [amyloid beta (Aß1-40, Aß1-42)], serum inflammatory marker (interleukin-6, IL-6), and endothelial dysfunction markers [soluble tumor necrosis factor-like weak inducer of apoptosis, and pentraxin-3 (sTWEAK, PTX3)] with respect to LS occurring in deep brain structures and subcortical white matter. In addition, we investigated links between LS, leukoaraiosis presence (white matter hyperintensities, WMHs), and functional outcomes at 3 months. Poor outcome was defined as a modified Rankin scale >2 at 3 months. Results: Significant differences were observed in levels of IL-6, PTX3, and sTWEAK between patients with deep lacunar infarcts and those with recent small subcortical infarcts (20.8 versus 15.6 pg/mL, p < 0.001; 7221.3 versus 4624.4 pg/mL, p < 0.0001; 2528.5 versus 1660.5 pg/mL, p = 0.001). Patients with poor outcomes at 3 months displayed notably higher concentrations of these biomarkers compared to those with good outcomes. By contrast, Aß1-40 and Aß1-42 were significantly lower in patients with deep LS (p < 0.0001). Aß1-42 levels were significantly higher in patients with LS in subcortical white matter who had poor outcomes. WMH severity only showed a significant association with deep LS and correlated with sTWEAK (p < 0.0001). Conclusion: The pathophysiological mechanisms of lacunar infarcts in deep brain structures seem different from those in the subcortical white matter. As a result, specific therapeutic and preventive strategies should be explored.

6.
Front Neuroinform ; 17: 1202156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593674

RESUMEN

Introduction: Dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion studies in magnetic resonance imaging (MRI) provide valuable data for studying vascular cerebral pathophysiology in different rodent models of brain diseases (stroke, tumor grading, and neurodegenerative models). The extraction of these hemodynamic parameters via DSC-MRI is based on tracer kinetic modeling, which can be solved using deconvolution-based methods, among others. Most of the post-processing software used in preclinical studies is home-built and custom-designed. Its use being, in most cases, limited to the institution responsible for the development. In this study, we designed a tool that performs the hemodynamic quantification process quickly and in a reliable way for research purposes. Methods: The DSC-MRI quantification tool, developed as a Python project, performs the basic mathematical steps to generate the parametric maps: cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), signal recovery (SR), and percentage signal recovery (PSR). For the validation process, a data set composed of MRI rat brain scans was evaluated: i) healthy animals, ii) temporal blood-brain barrier (BBB) dysfunction, iii) cerebral chronic hypoperfusion (CCH), iv) ischemic stroke, and v) glioblastoma multiforme (GBM) models. The resulting perfusion parameters were then compared with data retrieved from the literature. Results: A total of 30 animals were evaluated with our DSC-MRI quantification tool. In all the models, the hemodynamic parameters reported from the literature are reproduced and they are in the same range as our results. The Bland-Altman plot used to describe the agreement between our perfusion quantitative analyses and literature data regarding healthy rats, stroke, and GBM models, determined that the agreement for CBV and MTT is higher than for CBF. Conclusion: An open-source, Python-based DSC post-processing software package that performs key quantitative perfusion parameters has been developed. Regarding the different animal models used, the results obtained are consistent and in good agreement with the physiological patterns and values reported in the literature. Our development has been built in a modular framework to allow code customization or the addition of alternative algorithms not yet implemented.

7.
Sci Total Environ ; 826: 154089, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35218842

RESUMEN

The outbreak of COVID-19 pandemic unveiled an unprecedented scarcity of personal protective equipment (PPE) available in sanitary premises and for the population worldwide. This situation fostered the development of new strategies to reuse PPE that would ensure sterility and, simultaneously, preserve the filtering properties of the materials. In addition, the reuse of PPEs by reprocessing could reduce the environmental impact of the massive single-use and disposal of these materials. Conventional sterilization techniques such as steam or dry heat, ethylene oxide, and gamma irradiation may alter the functional properties of the PPEs and/or leave toxic residues. Supercritical CO2 (scCO2)-based sterilization is herein proposed as a safe, sustainable, and rapid sterilization method for contaminated face masks while preserving their performance. The functional (bacterial filtration efficiency, breathability, splash resistance, straps elasticity) properties of the processed FFP3 face masks were evaluated after 1 and 10 cycles of sterilization. Log-6 sterilization reduction levels were obtained for face masks contaminated with Bacillus pumilus endospores at mild operating conditions (CO2 at 39 °C and 100 bar for 30 min) and with low contents of H2O2 (150 ppm). Physicochemical properties of the FFP3 face masks remained unchanged after reprocessing and differences in efficacy were not observed neither in the filtration tests, following UNE-EN 14683, nor in the integrity of FFP3 filtration after the sterilization process. The herein presented method based on scCO2 technology is the first reported protocol achieving the reprocessing of FFP3 masks up to 10 cycles while preserving their functional properties.


Asunto(s)
COVID-19 , Máscaras , Dióxido de Carbono , Humanos , Peróxido de Hidrógeno , Pandemias/prevención & control , SARS-CoV-2 , Esterilización/métodos
8.
J Clin Med ; 11(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35629002

RESUMEN

Malignant infarction of the middle cerebral artery (m-MCA) is a complication of ischemic stroke. Since hyperthermia is a predictor of poor outcome, and antihyperthermic treatment is well tolerated, our main aim was to analyze whether the systemic temperature decrease within the first 24 h was associated with a better outcome. Furthermore, we studied potential biochemical and neuroimaging biomarkers. This is a retrospective observational analysis that included 119 patients. The temperature variations within the first 24 h were recorded. Biochemical laboratory parameters and neuroimaging variables were also analyzed. The temperature increase at the first 24 h (OR: 158.97; CI 95%: 7.29−3465.61; p < 0.001) was independently associated with a higher mortality. Moreover, antihyperthermic treatment (OR: 0.08; CI 95%: 0.02−0.38; p = 0.002) was significantly associated with a good outcome at 3 months. Importantly, antihyperthermic treatment was associated with higher survival at 3 months (78% vs. 50%, p = 0.003). Significant independently associations between the development of m-MCA and both microalbuminuria (OR: 1.01; CI 95%: 1.00−1.02; p = 0.005) and leukoaraiosis (OR: 3.07; CI 1.84−5.13−1.02; p < 0.0001) were observed. Thus, antihyperthermic treatment within the first 24 h was associated with both a better outcome and higher survival. An increased risk of developing m-MCA was associated with leukoaraiosis and an elevated level of microalbuminuria.

9.
Pharmaceutics ; 14(10)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36297588

RESUMEN

Recanalization of the occluded artery is the gold standard treatment for acute ischemic stroke, which includes enzymatic fibrinolytic treatment with the use of recombinant tissue plasminogen activators (rtPAs) to disrupt the occluding clot, the use of mechanical thrombectomy to physically remove the clot, or a combination of both. Fibrin is one of the main components of blood clots causing ischemic stroke and is the target of rtPA upon activation of plasminogen in the clot. In addition, fibrin content also influences the efficacy of mechanical thrombectomy. Current imaging methods can successfully identify occlusions in large vessels; however, there is still a need for contrast agents capable of visualizing small thrombi in ischemic stroke patients. In this work, we describe the synthesis and the in vitro characterization of a new diagnostic nanoparticle, as well as the in vivo evaluation in an animal model of thromboembolic stroke. Gd-labeled KCREKA peptides were synthesized and attached onto the surface of PEGylated superparamagnetic nanoparticles. Magnetic resonance imaging (MRI) of blood clots was performed in vitro and in vivo in animal models of thromboembolic stroke. KCREKA-NPs were synthesized by attaching the peptide to the amino (N) termini of the PEG-NPs. The sizes of the nanoparticles, measured via DLS, were similar for both KCREKA-NPs and PEG-NPs (23 ± 4 nm, PDI = 0.11 and 25 ± 8 nm, PDI = 0.24, respectively). In the same line, r2 relaxivities were also similar for the nanoparticles (149 ± 2 mM Fe s−1 and 151 ± 5 mM Fe s−1), whereas the r1 relaxivity was higher for KCREKA-NPs (1.68 ± 0.29 mM Fe s−1 vs. 0.69 ± 0.3 mM Fe s−1). In vitro studies showed that blood clots with low coagulation times were disrupted by rtPA, whereas aged clots were almost insensitive to the presence of rtPA. MRI in vitro studies showed a sharp decrease in the T1 × T2 signals measured for aged clots incubated with KCREKA-NPs compared with fresh clots (47% [22, 80] to 26% [15, 51]). Furthermore, the control blood showed a higher value of the T1 × T2 signal (39% [20, 61]), being the blood clots with low coagulation times the samples with the lowest values measured by MRI. In vivo studies showed a significant T1 × T2 signal loss in the clot region of 24% after i.v. injection of KCREKA-NPs. The thrombus age (2.5% ± 6.1% vs. 81.3% ± 19.8%, p < 0.01) confirmed our ability to identify in vivo fresh blood clots. In this study, we developed and tested a dual MRI nanoparticle, acting as T1 and T2 contrast agents in MRI analyses. The developed KCREKA-NPs showed affinity for the fibrin content of blood clots, and the MRI signals provided by the nanoparticles showed significant differences depending on the clot age. The developed KCREKA-NPs could be used as a tool to predict the efficacy of a recanalization treatment and improve the triage of ischemic stroke patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA