Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 628(8006): 145-153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538785

RESUMEN

As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.


Asunto(s)
Región CA1 Hipocampal , Roturas del ADN de Doble Cadena , Reparación del ADN , Inflamación , Memoria , Receptor Toll-Like 9 , Animales , Femenino , Masculino , Ratones , Envejecimiento/genética , Envejecimiento/patología , Región CA1 Hipocampal/fisiología , Centrosoma/metabolismo , Disfunción Cognitiva/genética , Condicionamiento Clásico , Matriz Extracelular/metabolismo , Miedo , Inestabilidad Genómica/genética , Histonas/metabolismo , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Memoria/fisiología , Trastornos Mentales/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neuroinflamatorias/genética , Neuronas/metabolismo , Neuronas/patología , Membrana Nuclear/patología , Receptor Toll-Like 9/deficiencia , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/inmunología , Receptor Toll-Like 9/metabolismo
2.
EMBO J ; 43(8): 1420-1444, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38528182

RESUMEN

Current approaches to the treatment of schizophrenia have mainly focused on the protein-coding part of the genome; in this context, the roles of microRNAs have received less attention. In the present study, we analyze the microRNAome in the blood and postmortem brains of schizophrenia patients, showing that the expression of miR-99b-5p is downregulated in both the prefrontal cortex and blood of patients. Lowering the amount of miR-99b-5p in mice leads to both schizophrenia-like phenotypes and inflammatory processes that are linked to synaptic pruning in microglia. The microglial miR-99b-5p-supressed inflammatory response requires Z-DNA binding protein 1 (Zbp1), which we identify as a novel miR-99b-5p target. Antisense oligonucleotides against Zbp1 ameliorate the pathological effects of miR-99b-5p inhibition. Our findings indicate that a novel miR-99b-5p-Zbp1 pathway in microglia might contribute to the pathogenesis of schizophrenia.


Asunto(s)
MicroARNs , Esquizofrenia , Animales , Humanos , Ratones , Microglía/metabolismo , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Esquizofrenia/genética
3.
Acta Neuropathol ; 148(1): 32, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207536

RESUMEN

Astrocytes provide crucial support for neurons, contributing to synaptogenesis, synaptic maintenance, and neurotransmitter recycling. Under pathological conditions, deregulation of astrocytes contributes to neurodegenerative diseases such as Alzheimer's disease (AD). While most research in this field has focused on protein-coding genes, non-coding RNAs, particularly long non-coding RNAs (lncRNAs), have emerged as significant regulatory molecules. In this study, we identified the lncRNA PRDM16-DT as highly enriched in the human brain, where it is almost exclusively expressed in astrocytes. PRDM16-DT and its murine homolog, Prdm16os, are downregulated in the brains of AD patients and in AD models. In line with this, knockdown of PRDM16-DT and Prdm16os revealed its critical role in maintaining astrocyte homeostasis and supporting neuronal function by regulating genes essential for glutamate uptake, lactate release, and neuronal spine density through interactions with the RE1-Silencing Transcription factor (Rest) and Polycomb Repressive Complex 2 (PRC2). Notably, CRISPR-mediated overexpression of Prdm16os mitigated functional deficits in astrocytes induced by stimuli linked to AD pathogenesis. These findings underscore the importance of PRDM16-DT in astrocyte function and its potential as a novel therapeutic target for neurodegenerative disorders characterized by astrocyte dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Proteínas de Unión al ADN , ARN Largo no Codificante , Factores de Transcripción , Astrocitos/metabolismo , Astrocitos/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Humanos , Ratones , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Masculino , Encéfalo/metabolismo , Encéfalo/patología , Neuronas/metabolismo , Neuronas/patología , Ratones Endogámicos C57BL
4.
Alzheimers Dement ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291737

RESUMEN

INTRODUCTION: MicroRNAs (miRNAs) play important roles in gene expression regulation and Alzheimer's disease (AD) pathogenesis. METHODS: We investigated the association between baseline plasma miRNAs and central AD biomarkers from the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 803): amyloid, tau, and neurodegeneration (A/T/N). Differentially expressed miRNAs and their targets were identified, followed by pathway enrichment analysis. Machine learning approaches were applied to investigate the role of miRNAs as blood biomarkers. RESULTS: We identified nine, two, and eight miRNAs significantly associated with A/T/N positivity, respectively. We identified 271 genes targeted by amyloid-related miRNAs with estrogen signaling receptor-mediated signaling among the enriched pathways. Additionally, 220 genes targeted by neurodegeneration-related miRNAs showed enrichment in pathways including the insulin growth factor 1 pathway. The classification performance of demographic information for A/T/N positivity was increased up to 9% with the inclusion of miRNAs. DISCUSSION: Plasma miRNAs were associated with central A/T/N biomarkers, highlighting their potential as blood biomarkers. HIGHLIGHTS: We performed association analysis of microRNAs (miRNAs) with amyloid/tau/neurodegeneration (A/T/N) biomarker positivity. We identified dysregulated miRNAs for A/T/N biomarker positivity. We identified Alzheimer's disease biomarker-specific/common pathways related to miRNAs. miRNAs improved the classification for A/T/N positivity by up to 9%. Our study highlights the potential of miRNAs as blood biomarkers.

5.
Alzheimers Dement ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291752

RESUMEN

INTRODUCTION: MicroRNAs are short non-coding RNAs that control proteostasis at the systems level and are emerging as potential prognostic and diagnostic biomarkers for Alzheimer's disease (AD). METHODS: We performed small RNA sequencing on plasma samples from 847 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. RESULTS: We identified microRNA signatures that correlate with AD diagnoses and help predict the conversion from mild cognitive impairment (MCI) to AD. DISCUSSION: Our data demonstrate that plasma microRNA signatures can be used to not only diagnose MCI, but also, critically, predict the conversion from MCI to AD. Moreover, combined with neuropsychological testing, plasma microRNAome evaluation helps predict MCI to AD conversion. These findings are of considerable public interest because they provide a path toward reducing indiscriminate utilization of costly and invasive testing by defining the at-risk segment of the aging population. HIGHLIGHTS: We provide the first analysis of the plasma microRNAome for the ADNI study. The levels of several microRNAs can be used as biomarkers for the prediction of conversion from MCI to AD. Adding the evaluation of plasma microRNA levels to neuropsychological testing in a clinical setting increases the accuracy of MCI to AD conversion prediction.

6.
EMBO J ; 36(19): 2815-2828, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28768717

RESUMEN

Age-associated memory decline is due to variable combinations of genetic and environmental risk factors. How these risk factors interact to drive disease onset is currently unknown. Here we begin to elucidate the mechanisms by which post-traumatic stress disorder (PTSD) at a young age contributes to an increased risk to develop dementia at old age. We show that the actin nucleator Formin 2 (Fmn2) is deregulated in PTSD and in Alzheimer's disease (AD) patients. Young mice lacking the Fmn2 gene exhibit PTSD-like phenotypes and corresponding impairments of synaptic plasticity, while the consolidation of new memories is unaffected. However, Fmn2 mutant mice develop accelerated age-associated memory decline that is further increased in the presence of additional risk factors and is mechanistically linked to a loss of transcriptional homeostasis. In conclusion, our data present a new approach to explore the connection between AD risk factors across life span and provide mechanistic insight to the processes by which neuropsychiatric diseases at a young age affect the risk for developing dementia.


Asunto(s)
Demencia/genética , Proteínas de Microfilamentos/genética , Proteínas Nucleares/genética , Adulto , Edad de Inicio , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Estudios de Casos y Controles , Demencia/epidemiología , Demencia/psicología , Forminas , Humanos , Masculino , Memoria/fisiología , Ratones , Ratones Noqueados , Persona de Mediana Edad , Proteínas del Tejido Nervioso , Plasticidad Neuronal/genética , Fenotipo , Factores de Riesgo , Trastornos por Estrés Postraumático/complicaciones , Trastornos por Estrés Postraumático/epidemiología , Trastornos por Estrés Postraumático/genética
7.
Proc Natl Acad Sci U S A ; 114(23): E4686-E4694, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28533418

RESUMEN

Schizophrenia is a devastating disease that arises on the background of genetic predisposition and environmental risk factors, such as early life stress (ELS). In this study, we show that ELS-induced schizophrenia-like phenotypes in mice correlate with a widespread increase of histone-deacetylase 1 (Hdac1) expression that is linked to altered DNA methylation. Hdac1 overexpression in neurons of the medial prefrontal cortex, but not in the dorsal or ventral hippocampus, mimics schizophrenia-like phenotypes induced by ELS. Systemic administration of an HDAC inhibitor rescues the detrimental effects of ELS when applied after the manifestation of disease phenotypes. In addition to the hippocampus and prefrontal cortex, mice subjected to ELS exhibit increased Hdac1 expression in blood. Moreover, Hdac1 levels are increased in blood samples from patients with schizophrenia who had encountered ELS, compared with patients without ELS experience. Our data suggest that HDAC1 inhibition should be considered as a therapeutic approach to treat schizophrenia.


Asunto(s)
Histona Desacetilasa 1/metabolismo , Esquizofrenia/enzimología , Estrés Psicológico/enzimología , Adulto , Anciano , Animales , Metilación de ADN , Femenino , Hipocampo/enzimología , Histona Desacetilasa 1/sangre , Histona Desacetilasa 1/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Persona de Mediana Edad , Fenotipo , Corteza Prefrontal/enzimología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Esquizofrenia/etiología , Esquizofrenia/genética , Estrés Psicológico/complicaciones , Estrés Psicológico/genética , Adulto Joven
8.
EMBO J ; 33(17): 1912-27, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25024434

RESUMEN

Neuronal histone acetylation has been linked to memory consolidation, and targeting histone acetylation has emerged as a promising therapeutic strategy for neuropsychiatric diseases. However, the role of histone-modifying enzymes in the adult brain is still far from being understood. Here we use RNA sequencing to screen the levels of all known histone acetyltransferases (HATs) in the hippocampal CA1 region and find that K-acetyltransferase 2a (Kat2a)--a HAT that has not been studied for its role in memory function so far--shows highest expression. Mice that lack Kat2a show impaired hippocampal synaptic plasticity and long-term memory consolidation. We furthermore show that Kat2a regulates a highly interconnected hippocampal gene expression network linked to neuroactive receptor signaling via a mechanism that involves nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In conclusion, our data establish Kat2a as a novel and essential regulator of hippocampal memory consolidation.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Histona Acetiltransferasas/metabolismo , Memoria , Animales , Región CA1 Hipocampal/enzimología , Perfilación de la Expresión Génica , Histona Acetiltransferasas/genética , Ratones , Ratones Noqueados
9.
EMBO J ; 30(20): 4299-308, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21946562

RESUMEN

MicroRNAs are key regulators of transcriptome plasticity and have been implicated with the pathogenesis of brain diseases. Here, we employed massive parallel sequencing and provide, at an unprecedented depth, the complete and quantitative miRNAome of the mouse hippocampus, the prime target of neurodegenerative diseases such as Alzheimer's disease (AD). Using integrative genetics, we identify miR-34c as a negative constraint of memory consolidation and show that miR-34c levels are elevated in the hippocampus of AD patients and corresponding mouse models. In line with this, targeting miR-34 seed rescues learning ability in these mouse models. Our data suggest that miR-34c could be a marker for the onset of cognitive disturbances linked to AD and indicate that targeting miR-34c could be a suitable therapy.


Asunto(s)
Hipocampo/metabolismo , Trastornos de la Memoria/metabolismo , MicroARNs/metabolismo , Anciano , Enfermedad de Alzheimer/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Transcriptoma
10.
EMBO J ; 30(19): 4071-83, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21873981

RESUMEN

Extinction learning refers to the phenomenon that a previously learned response to an environmental stimulus, for example, the expression of an aversive behaviour upon exposure to a specific context, is reduced when the stimulus is repeatedly presented in the absence of a previously paired aversive event. Extinction of fear memories has been implicated with the treatment of anxiety disease but the molecular processes that underlie fear extinction are only beginning to emerge. Here, we show that fear extinction initiates upregulation of hippocampal insulin-growth factor 2 (Igf2) and downregulation of insulin-growth factor binding protein 7 (Igfbp7). In line with this observation, we demonstrate that IGF2 facilitates fear extinction, while IGFBP7 impairs fear extinction in an IGF2-dependent manner. Furthermore, we identify one cellular substrate of altered IGF2 signalling during fear extinction. To this end, we show that fear extinction-induced IGF2/IGFBP7 signalling promotes the survival of 17-19-day-old newborn hippocampal neurons. In conclusion, our data suggest that therapeutic strategies that enhance IGF2 signalling and adult neurogenesis might be suitable to treat disease linked to excessive fear memory.


Asunto(s)
Extinción Psicológica/fisiología , Miedo/fisiología , Regulación de la Expresión Génica , Hipocampo/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Memoria/fisiología , Animales , Animales Recién Nacidos , Proliferación Celular , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal , Factores de Tiempo
12.
bioRxiv ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39005272

RESUMEN

Astrocytes provide crucial support for neurons, contributing to synaptogenesis, synaptic maintenance, and neurotransmitter recycling. Under pathological conditions, deregulation of astrocytes contributes to neurodegenerative diseases such as Alzheimer's disease (AD), highlighting the growing interest in targeting astrocyte function to address early phases of AD pathogenesis. While most research in this field has focused on protein-coding genes, non-coding RNAs, particularly long non-coding RNAs (lncRNAs), have emerged as significant regulatory molecules. In this study, we identified the lncRNA PRDM16-DT as highly enriched in the human brain, where it is almost exclusively expressed in astrocytes. PRDM16-DT and its murine homolog, Prdm16os, are downregulated in the brains of AD patients and in AD models. In line with this, knockdown of PRDM16-DT and Prdm16os revealed its critical role in maintaining astrocyte homeostasis and supporting neuronal function by regulating genes essential for glutamate uptake, lactate release, and neuronal spine density through interactions with the RE1-Silencing Transcription factor (Rest) and Polycomb Repressive Complex 2 (PRC2). Notably, CRISPR-mediated overexpression of Prdm16os mitigated functional deficits in astrocytes induced by stimuli linked to AD pathogenesis. These findings underscore the importance of PRDM16-DT in astrocyte function and its potential as a novel therapeutic target for neurodegenerative disorders characterized by astrocyte dysfunction.

13.
J Neurosci ; 32(15): 5062-73, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22496552

RESUMEN

Histone acetylation has been implicated with the pathogenesis of neuropsychiatric disorders and targeting histone deacetylases (HDACs) using HDAC inhibitors was shown to be neuroprotective and to initiate neuroregenerative processes. However, little is known about the role of individual HDAC proteins during the pathogenesis of brain diseases. HDAC1 was found to be upregulated in patients suffering from neuropsychiatric diseases. Here, we show that virus-mediated overexpression of neuronal HDAC1 in the adult mouse hippocampus specifically affects the extinction of contextual fear memories, while other cognitive abilities were unaffected. In subsequent experiments we show that under physiological conditions, hippocampal HDAC1 is required for extinction learning via a mechanism that involves H3K9 deacetylation and subsequent trimethylation of target genes. In conclusion, our data show that hippocampal HDAC1 has a specific role in memory function.


Asunto(s)
Extinción Psicológica/fisiología , Miedo/fisiología , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/fisiología , Estimulación Acústica , Animales , Benzamidas/administración & dosificación , Benzamidas/farmacología , Western Blotting , Inmunoprecipitación de Cromatina , Electrochoque , Conducta Exploratoria/fisiología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Histona Desacetilasa 1/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/administración & dosificación , Inhibidores de Histona Desacetilasas/farmacología , Inmunohistoquímica , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Microinyecciones , Neuronas/metabolismo , Equilibrio Postural/fisiología , Piridinas/administración & dosificación , Piridinas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reconocimiento en Psicología/fisiología , Reflejo de Sobresalto/fisiología , Natación/psicología
14.
Nature ; 447(7141): 178-82, 2007 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-17468743

RESUMEN

Neurodegenerative diseases of the central nervous system are often associated with impaired learning and memory, eventually leading to dementia. An important aspect in pre-clinical research is the exploration of strategies to re-establish learning ability and access to long-term memories. By using a mouse model that allows temporally and spatially restricted induction of neuronal loss, we show here that environmental enrichment reinstated learning behaviour and re-established access to long-term memories after significant brain atrophy and neuronal loss had already occurred. Environmental enrichment correlated with chromatin modifications (increased histone-tail acetylation). Moreover, increased histone acetylation by inhibitors of histone deacetylases induced sprouting of dendrites, an increased number of synapses, and reinstated learning behaviour and access to long-term memories. These data suggest that inhibition of histone deacetylases might be a suitable therapeutic avenue for neurodegenerative diseases associated with learning and memory impairment, and raises the possibility of recovery of long-term memories in patients with dementia.


Asunto(s)
Encéfalo/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Ambiente , Histona Desacetilasas/metabolismo , Aprendizaje/fisiología , Memoria/fisiología , Acetilación/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Butiratos/farmacología , Cromatina/efectos de los fármacos , Cromatina/genética , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Demencia/fisiopatología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Inhibidores de Histona Desacetilasas , Humanos , Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Recuerdo Mental/efectos de los fármacos , Recuerdo Mental/fisiología , Ratones , Plasticidad Neuronal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
15.
Learn Mem ; 18(1): 49-57, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21191042

RESUMEN

Learning and memory processes critically involve the orchestrated regulation of de novo protein synthesis. On the other hand it has become clear that regulated protein degradation also plays a major role in neuronal plasticity and learning behavior. One of the key pathways mediating protein degradation is proteosomal protein destruction. The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that targets proteins for proteosomal degradation by the 26S proteasome. While the APC/C is essential for cell cycle progression it is also expressed in postmitotic neurons where it has been implicated with axonal outgrowth and neuronal survival. In this study we addressed the role of APC/C in learning and memory function by generating mice that lack the essential subunit APC2 from excitatory neurons of the adult forebrain. Those animals are viable but exhibit a severe impairment in the ability to extinct fear memories, a process critical for the treatment of anxiety diseases such as phobia or post-traumatic stress disorder. Since deregulated protein degradation and APC/C activity has been implicated with neurodegeneration we also analyzed the effect of Apc2 deletion in a mouse model for Alzheimer's disease. In our experimental setting loss of APC2 form principle forebrain neurons did not affect the course of pathology in an Alzheimer's disease mouse model. In conclusion, our data provides genetic evidence that APC/C activity in the adult forebrain is required for cognitive function.


Asunto(s)
Memoria/fisiología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Análisis de Varianza , Ciclosoma-Complejo Promotor de la Anafase , Animales , Subunidad Apc2 del Ciclosoma-Complejo Promotor de la Anafase , Encéfalo/citología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Condicionamiento Clásico/fisiología , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Humanos , Discapacidades para el Aprendizaje/etiología , Discapacidades para el Aprendizaje/genética , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/etiología , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Presenilina-1/genética , ARN Mensajero/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Complejos de Ubiquitina-Proteína Ligasa/genética
16.
Nat Neurosci ; 10(8): 1012-9, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17632506

RESUMEN

Treatment of emotional disorders involves the promotion of extinction processes, which are defined as the learned reduction of fear. The molecular mechanisms underlying extinction have only begun to be elucidated. By employing genetic and pharmacological approaches in mice, we show here that extinction requires downregulation of Rac-1 and cyclin-dependent kinase 5 (Cdk5), and upregulation of p21 activated kinase-1 (PAK-1) activity. This is physiologically achieved by a Rac-1-dependent relocation of the Cdk5 activator p35 from the membrane to the cytosol and dissociation of p35 from PAK-1. Moreover, our data suggest that Cdk5/p35 activity prevents extinction in part by inhibition of PAK-1 activity in a Rac-1-dependent manner. We propose that extinction of contextual fear is regulated by counteracting components of a molecular pathway involving Rac-1, Cdk5 and PAK-1. Our data suggest that this pathway could provide a suitable target for therapeutic treatment of emotional disorders.


Asunto(s)
Condicionamiento Clásico/fisiología , Quinasa 5 Dependiente de la Ciclina/fisiología , Extinción Psicológica/fisiología , Miedo , Hipocampo/enzimología , Transducción de Señal/fisiología , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , Análisis de Varianza , Animales , Conducta Animal , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Hipocampo/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos
17.
iScience ; 24(6): 102617, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34142063

RESUMEN

It is well established that the formation of episodic memories requires multiple hippocampal mechanisms operating on different time scales. Early mechanisms of memory formation (synaptic consolidation) have been extensively characterized. However, delayed mechanisms, which maintain hippocampal activity as memories stabilize in cortical circuits, are not well understood. Here we demonstrate that contrary to the transient expression of early- and delayed-response genes, the expression of cytoskeleton- and extracellular matrix-associated genes remains dynamic even at remote time points. The most profound expression changes clustered around primary cilium-associated and collagen genes. These genes most likely contribute to memory by stabilizing perineuronal nets in the dorsohippocampal CA1 subfield, as revealed by targeted disruptions of the primary cilium or perineuronal nets. The findings show that nonsynaptic, primary cilium-mediated mechanisms are required for the persistence of context memory.

18.
Transl Psychiatry ; 11(1): 514, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625536

RESUMEN

MicroRNAs have been linked to synaptic plasticity and memory function and are emerging as potential biomarkers and therapeutic targets for cognitive diseases. Most of these data stem from the analysis of model systems or postmortem tissue from patients which mainly represents an advanced stage of pathology. Due to the in-accessibility of human brain tissue upon experimental manipulation, it is still challenging to identify microRNAs relevant to human cognition, which is however a key step for future translational studies. Here, we employ exercise as an experimental model for memory enhancement in healthy humans with the aim to identify microRNAs linked to memory function. By analyzing the circulating smallRNAome we find a cluster of 18 microRNAs that are highly correlated to cognition. MicroRNA-409-5p and microRNA-501-3p were the most significantly regulated candidates. Functional analysis revealed that the two microRNAs are important for neuronal integrity, synaptic plasticity, and morphology. In conclusion, we provide a novel approach to identify microRNAs linked to human memory function.


Asunto(s)
MicroARNs , Biomarcadores , Cognición , Ejercicio Físico , Humanos , MicroARNs/genética , Plasticidad Neuronal
19.
EMBO Mol Med ; 13(3): e11900, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33471428

RESUMEN

In current clinical practice, care of diseased patients is often restricted to separated disciplines. However, such an organ-centered approach is not always suitable. For example, cognitive dysfunction is a severe burden in heart failure patients. Moreover, these patients have an increased risk for age-associated dementias. The underlying molecular mechanisms are presently unknown, and thus, corresponding therapeutic strategies to improve cognition in heart failure patients are missing. Using mice as model organisms, we show that heart failure leads to specific changes in hippocampal gene expression, a brain region intimately linked to cognition. These changes reflect increased cellular stress pathways which eventually lead to loss of neuronal euchromatin and reduced expression of a hippocampal gene cluster essential for cognition. Consequently, mice suffering from heart failure exhibit impaired memory function. These pathological changes are ameliorated via the administration of a drug that promotes neuronal euchromatin formation. Our study provides first insight to the molecular processes by which heart failure contributes to neuronal dysfunction and point to novel therapeutic avenues to treat cognitive defects in heart failure patients.


Asunto(s)
Insuficiencia Cardíaca , Trastornos de la Memoria , Animales , Cognición , Epigénesis Genética , Expresión Génica , Insuficiencia Cardíaca/genética , Humanos , Ratones
20.
EMBO Mol Med ; 13(11): e13659, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34633146

RESUMEN

While some individuals age without pathological memory impairments, others develop age-associated cognitive diseases. Since changes in cognitive function develop slowly over time in these patients, they are often diagnosed at an advanced stage of molecular pathology, a time point when causative treatments fail. Thus, there is great need for the identification of inexpensive and minimal invasive approaches that could be used for screening with the aim to identify individuals at risk for cognitive decline that can then undergo further diagnostics and eventually stratified therapies. In this study, we use an integrative approach combining the analysis of human data and mechanistic studies in model systems to identify a circulating 3-microRNA signature that reflects key processes linked to neural homeostasis and inform about cognitive status. We furthermore provide evidence that expression changes in this signature represent multiple mechanisms deregulated in the aging and diseased brain and are a suitable target for RNA therapeutics.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , MicroARNs , Encéfalo , Cognición , Disfunción Cognitiva/genética , Humanos , MicroARNs/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA