Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Chem Res Toxicol ; 37(2): 419-428, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38314730

RESUMEN

Photolysis of DNA attached to gold nanoparticles (AuNPs) with ultraviolet (UV) photons induces DNA damage. The release of nucleobases (Cyt, Gua, Ade, and Thy) from DNA was the major reaction (99%) with an approximately equal release of pyrimidines and purines. This reaction contributes to the formation of abasic sites in DNA. In addition, liquid chromatography-mass spectrometry/MS (LC-MS/MS) analysis revealed the formation of reduction products of pyrimidines (5,6-dihydrothymidine and 5,6-dihydro-2'-deoxyuridine) and eight 2',3'- and 2',5'-dideoxynucleosides. In contrast, there was no evidence of the formation of 5-hydroxymethyluracil and 8-oxo-7,8-dihydroguanine, which are common oxidation products of thymine and guanine, respectively. Using appropriate filters, the main photochemical reactions were found to involve photoelectrons ejected from AuNPs by UV photons. The contribution of "hot" conduction band electrons with energies below the photoemission threshold was minor. The mechanism for the release of free nucleobases by photoelectrons is proposed to take place by the initial formation of transient molecular anions of the nucleobases, followed by dissociative electron attachment at the C1'-N glycosidic bond connecting the nucleobase to the sugar-phosphate backbone. This mechanism is consistent with the reactivity of secondary electrons ejected by X-ray irradiation of AuNPs attached to DNA, as well as the reactions of various nucleic acid derivatives irradiated with monoenergetic very-low-energy electrons (∼2 eV). These studies should help us to understand the chemistry of nanoparticles that are exposed to UV light and that are used as scaffolds and catalysts in molecular biology, curative agents in photodynamic therapy, and components of sunscreens and cosmetics.


Asunto(s)
Oro , Nanopartículas del Metal , Electrones , Cromatografía Liquida , Fotólisis , Espectrometría de Masas en Tándem , ADN/química , Pirimidinas/química , Daño del ADN
2.
Phys Chem Chem Phys ; 25(44): 30412-30418, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37916504

RESUMEN

We investigate the mechanism of damage to the carbonate ester chemical functions in Poly allyl diglycol carbonate (PADC) induced by low-energy electrons (LEEs) of <50 eV, which are major components of the initial secondary products of ionizing radiation. PADC is the world's most widely used polymeric nuclear track detector (PNTD) for swift ion detection. Using diethylene glycol monoethyl ether acetate as a surrogate for PADC, we have measured for irradiation with low-energy electrons (LEEs) of <50 eV, the electron stimulated desorption (ESD) signal of O- from 3-monolayer thick films of DGMEA by time-of-flight mass spectrometry. We find that for electron irradiation at energies >6-9 eV, the instantaneous ESD yield of O- increases with the cumulative number of incident electrons (i.e., fluence), indicating that the additional O- signal derives from an electron-induced DGMEA product. From comparison with ESD measurements from films of acetic acid and acetaldehyde, we identify that the additional desorbed O- signal derives from oxygen atoms originally adjacent to the carbonyl bond in DGMEA. Since LEEs are the predominant secondary particles produced by ionizing radiation, this finding helps to better understand the mechanism of damage to carbonate ester in PADC, which is a key step for latent track formation in PADC.

3.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36902132

RESUMEN

Metal nanoparticles are considered as highly promising radiosensitizers in cancer radiotherapy. Understanding their radiosensitization mechanisms is critical for future clinical applications. This review is focused on the initial energy deposition by short-range Auger electrons; when high energy radiation is absorbed by gold nanoparticles (GNPs) located near vital biomolecules; such as DNA. Auger electrons and the subsequent production of secondary low energy electrons (LEEs) are responsible for most the ensuing chemical damage near such molecules. We highlight recent progress on DNA damage induced by the LEEs produced abundantly within about 100 nanometers from irradiated GNPs; and by those emitted by high energy electrons and X-rays incident on metal surfaces under differing atmospheric environments. LEEs strongly react within cells; mainly via bound breaking processes due to transient anion formation and dissociative electron attachment. The enhancement of damages induced in plasmid DNA by LEEs; with or without the binding of chemotherapeutic drugs; are explained by the fundamental mechanisms of LEE interactions with simple molecules and specific sites on nucleotides. We address the major challenge of metal nanoparticle and GNP radiosensitization; i.e., to deliver the maximum local dose of radiation to the most sensitive target of cancer cells (i.e., DNA). To achieve this goal the emitted electrons from the absorbed high energy radiation must be short range, and produce a large local density of LEEs, and the initial radiation must have the highest possible absorption coefficient compared to that of soft tissue (e.g., 20-80 keV X-rays).


Asunto(s)
Nanopartículas del Metal , Fármacos Sensibilizantes a Radiaciones , Nanopartículas del Metal/química , Electrones , Oro/química , Fármacos Sensibilizantes a Radiaciones/química , ADN/química
4.
J Chem Phys ; 154(22): 224706, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34241211

RESUMEN

We have employed electron stimulated desorption (ESD) and x-ray photoelectron spectroscopy (XPS) to study the chemical species generated from multilayer films of N2O, C2D2, and mixtures thereof (i.e., N2O/C2D2) by the impact of low energy electrons with energies between 30 and 70 eV. Our ESD results for pure films of N2O show the production of numerous fragment cations and anions, and of larger molecular ions, of sufficient kinetic energy to escape into vacuum, which are likely formed by ion-molecule scattering in the film. Ion-molecule scattering is also responsible for the production of cations from C2D2 films that contain as many as six or seven carbon atoms. Many of the same anions and cations desorb from N2O/C2D2 mixtures, as well as new species, which is the result of ion-molecule scattering in the film. Anion desorption signals further indicate the formation of C-N containing species within the irradiated films. XPS spectra of N1s, C1s, and O1s lines reveal the fragmentation of N-O bonds and gradual formation of molecules containing species containing O-C=O, C=O, and C-O functional groups. A comparison between ESD and XPS findings suggests that species observed in the ESD channel are primarily products of reactions taking place at the film-vacuum interface, while those observed in the XPS derive from reactions occurring within the solid.

5.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360644

RESUMEN

The complex physical and chemical reactions between the large number of low-energy (0-30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.


Asunto(s)
Daño del ADN , ADN/química , ADN/efectos de la radiación , Electrones/efectos adversos , Animales , Humanos
6.
Int J Mol Sci ; 21(14)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32659905

RESUMEN

A liposomal formulation of gold nanoparticles (GNPs) and carboplatin, named LipoGold, was produced with the staggered herringbone microfluidic method. The radiosensitizing potential of LipoGold and similar concentrations of non-liposomal GNPs, carboplatin and oxaliplatin was evaluated in vitro with the human colorectal cancer cell line HCT116 in a clonogenic assay. Progression of HCT116 tumor implanted subcutaneously in NU/NU mice was monitored after an irradiation of 10 Gy combined with either LipoGold, GNPs or carboplatin injected directly into the tumor by convection-enhanced delivery. Radiosensitization by GNPs alone or carboplatin alone was observed only at high concentrations of these compounds. Furthermore, low doses of carboplatin alone or a combination of carboplatin and GNPs did not engender radiosensitization. However, the same low doses of carboplatin and GNPs administered simultaneously by encapsulation in liposomal nanocarriers (LipoGold) led to radiosensitization and efficient control of cell proliferation. Our study shows that the radiosensitizing effect of a combination of carboplatin and GNPs is remarkably more efficient when both compounds are simultaneously delivered to the tumor cells using a liposomal carrier.


Asunto(s)
Neoplasias Colorrectales/terapia , Oro/administración & dosificación , Liposomas/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Compuestos Organoplatinos/farmacología , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Animales , Carboplatino/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quimioradioterapia/métodos , Portadores de Fármacos/administración & dosificación , Células HCT116 , Humanos , Masculino , Ratones , Ratones Desnudos , Oxaliplatino/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
7.
J Am Chem Soc ; 141(26): 10315-10323, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31244176

RESUMEN

Numerous experimental studies show that 5-15 eV electrons induce strand breaks in DNA at energies below the ionization threshold of DNA components. In this energy range, DNA damage arises principally by the formation of transient negative ions, decaying into dissociative electron attachment (DEA) and electronic excitation of dissociative states. Here, we carried out LC-MS/MS analysis of the degradation products arising from bombardment of TpT, a DNA model compound, irradiated with very low energy electrons (vLEEs; ∼1.8 eV). The formation of thymidine 5'-monophosphate (TMP5') together with 2',3'-dideoxythymidine (ddT3') can be explained by cleavage of the C3'-O bond of TpT, whereas thymidine 3'-monophosphate (TMP3') and 2',5'-dideoxythymidine (ddT5') are formed by cleavage of the C5'-O bond. The formation of ddT3' and ddT5' decreased upon irradiation of either TMP5' or TMP3', and even further in the case of thymidine, underlining the critical role of the phosphate group. Interestingly, the yield of TMP5' and TMP3' was higher than that of the corresponding ddT3' and ddT5' products, suggesting alternative fates of C3' and C5'-centered sugar radicals. In contrast, the release of thymine from TpT was minor (<20%) and did not result in the formation of expected products from DEA-mediated cleavage at the N-glycosidic bond. Lastly, vLEE induced the conversion of thymine to 5,6-dihydrothymine (5,6-dhT) within TpT, a reaction likely involving thymine anion radicals. In summary, we show that a major pathway of vLEEs involves DEA-mediated cleavage of the C3'-O and C5'-O bonds of TpT, resulting in the formation of specific fragments, which represent a prompt single strand break in DNA.


Asunto(s)
ADN/análisis , Electrones , Oligonucleótidos/química , Timina/química , Cromatografía Liquida , Espectrometría de Masas en Tándem
8.
J Chem Phys ; 150(19): 195101, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31117770

RESUMEN

In chemoradiation therapy, the synergy between the radiation and the chemotherapeutic agent (CA) can result in a super-additive treatment. A priori, this increased effectiveness could be estimated from model calculations, if absolute cross sections (ACSs) involved in cellular damage are substantially higher, when the CA binds to DNA. We measure ACSs for damages induced by 10 eV electrons, when DNA binds to the CA cisplatin as in chemotherapy. At this energy, DNA is damaged essentially by the decay of core-excited transient anions into bond-breaking channels. Films of cisplatin-DNA complexes of ratio 5:1 with thicknesses 10, 15, and 20 nm were irradiated in vacuum during 5-30 s. Conformation changes were quantified by electrophoresis and yields extrapolated from exposure-response curves. Base damages (BDs) were revealed and quantified by enzymatic treatment. The ACSs were generated from these yields by two mathematical models. For 3197 base-pair plasmid DNA, ACS for single strand breaks, double strand breaks (DSBs), crosslinks, non-DSB cluster damages, and total BDs is 71 ± 2, 9.3 ± 0.4, 10.1 ± 0.3, 8.2 ± 0.3, and 115 ± 2 ×10-15 cm2, respectively. These ACSs are higher than those of nonmodified DNA by factors of 1.6 ± 0.1, 2.2 ± 0.1, 1.3 ± 0.1, 1.3 ± 0.3, and 2.1 ± 0.4, respectively. Since LEEs are produced in large quantities by radiolysis and strongly interact with biomolecules, we expect such enhancements to produce substantial additional damages in the DNA of the nucleus of cancer cells during concomitant chemoradiation therapy. The increase damage appears sufficiently large to justify more elaborate simulations, which could provide a quantitative evaluation of molecular sensitization by Pt-CAs.


Asunto(s)
Cisplatino/efectos de la radiación , Complejos de Coordinación/efectos de la radiación , Daño del ADN , ADN/efectos de la radiación , Electrones , ADN/química , ADN-Formamidopirimidina Glicosilasa/química , Desoxirribonucleasa (Dímero de Pirimidina)/química , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Plásmidos
9.
Int J Mol Sci ; 20(15)2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31370253

RESUMEN

Low-energy electrons (LEEs) of energies ≤30 eV are generated in large quantities by ionizing radiation. These electrons can damage DNA; particularly, they can induce the more detrimental clustered lesions in cells. This type of lesions, which are responsible for a large portion of the genotoxic stress generated by ionizing radiation, is described in the Introduction. The reactions initiated by the collisions of 0.5-30 eV electrons with oligonucleotides, duplex DNA, and DNA bound to chemotherapeutic platinum drugs are explained and reviewed in the subsequent sections. The experimental methods of LEE irradiation and DNA damage analysis are described with an emphasis on the detection of cluster lesions, which are considerably enhanced in DNA-Pt-drug complexes. Based on the energy dependence of damage yields and cross-sections, a mechanism responsible for the clustered lesions can be attributed to the capture of a single electron by the electron affinity of an excited state of a base, leading to the formation of transient anions at 6 and 10 eV. The initial capture is followed by electronic excitation of the base and dissociative attachment-at other DNA sites-of the electron reemitted from the temporary base anion. The mechanism is expected to be universal in the cellular environment and plays an important role in the formation of clustered lesions.


Asunto(s)
Antineoplásicos/química , ADN/efectos de la radiación , Electrones , Fármacos Sensibilizantes a Radiaciones/química , Bromouracilo/química , Carboplatino/química , Cisplatino/química , ADN/química , Roturas del ADN de Doble Cadena/efectos de la radiación , Células Eucariotas/química , Células Eucariotas/efectos de la radiación , Humanos , Oligonucleótidos/química , Oligonucleótidos/efectos de la radiación , Oxaliplatino/química , Plásmidos/química , Plásmidos/efectos de la radiación , Radiación Ionizante
10.
Phys Chem Chem Phys ; 20(36): 23403-23413, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30178785

RESUMEN

In the present study, we consider the self-regulated generation of spatially homogeneous low density plasma (LDP) micro-channels as a high intensity ionization source arising from the multi-filamentation of powerful femtosecond (fs) laser pulses in aqueous solutions. We investigate the modulation of the femtosecond laser multiple filamentation for tuning the size of gold nanoparticles (AuNPs) synthesized in an irradiated gold chloride solution. Previous studies on the radiation-induced synthesis of colloidal gold by more conventional ionization sources, such as high energy γ-rays and electron beams, highlighted the dependence of the size distribution of AuNPs on the density of energy deposited per unit of time, i.e. the dose rate. The present method of laser-induced production of AuNPs rests on a similar radiation-assisted process, i.e. the reduction of the solvated trivalent gold ions by the hydrated electrons produced upon ionization of water. We find that trivial optical manipulation varies the rate of deposited energy by laser irradiation, which can be considered equivalent to a variation of the dose rate. We investigate the influence of varying the density of energy deposited on the laser-induced gold cluster size distribution and made a comparison with the high energy radiation-induced synthesis of AuNPs. Here, our results highlight that the present method of laser irradiation, in the regime of LDP generation, mimics the radiolysis of water at an adjustable high dose rate. More generally, these spatially and temporally resolved plasmas could be developed as a tool for the unprecedented control of chemistry under ionizing radiation.

11.
J Chem Phys ; 148(16): 164702, 2018 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-29716196

RESUMEN

Glycine (Gly), the simplest amino-acid building-block of proteins, has been identified on icy dust grains in the interstellar medium, icy comets, and ice covered meteorites. These astrophysical ices contain simple molecules (e.g., CO2, H2O, CH4, HCN, and NH3) and are exposed to complex radiation fields, e.g., UV, γ, or X-rays, stellar/solar wind particles, or cosmic rays. While much current effort is focused on understanding the radiochemistry induced in these ices by high energy radiation, the effects of the abundant secondary low energy electrons (LEEs) it produces have been mostly assumed rather than studied. Here we present the results for the exposure of multilayer CO2:CH4:NH3 ice mixtures to 0-70 eV electrons under simulated astrophysical conditions. Mass selected temperature programmed desorption (TPD) of our electron irradiated films reveals multiple products, most notably intact glycine, which is supported by control measurements of both irradiated or un-irradiated binary mixture films, and un-irradiated CO2:CH4:NH3 ices spiked with Gly. The threshold of Gly formation by LEEs is near 9 eV, while the TPD analysis of Gly film growth allows us to determine the "quantum" yield for 70 eV electrons to be about 0.004 Gly per incident electron. Our results show that simple amino acids can be formed directly from simple molecular ingredients, none of which possess preformed C-C or C-N bonds, by the copious secondary LEEs that are generated by ionizing radiation in astrophysical ices.

12.
J Nanobiotechnology ; 16(1): 77, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30290821

RESUMEN

BACKGROUND: Effectiveness of chemotherapy for treating glioblastoma (GBM) brain tumors is hampered by the blood-brain barrier which limits the entry into the brain of most drugs from the blood. To bypass this barrier, convection-enhanced delivery (CED) was proposed to directly inject drugs in tumor. However, the benefit of CED may be hampered when drugs diffuse outside the tumor to then induce neurotoxicity. Encapsulation of drugs into liposome aims at increasing tumor cells specificity and reduces neurotoxicity. However, the most appropriate liposomal formulation to inject drugs into brain tumor by CED still remains to be determined. In this study, four liposomal carboplatin formulations were prepared and tested in vitro on F98 glioma cells and in Fischer rats carrying F98 tumor implanted in the brain. Impact of pegylation on liposomal surface and relevance of positive or negative charge were assessed. RESULTS: The cationic non-pegylated (L1) and pegylated (L2) liposomes greatly improved the toxicity of carboplatin in vitro compared to free carboplatin, whereas only a modest improvement and even a reduction of efficiency were measured with the anionic non-pegylated (L3) and the pegylated (L4) liposomes. Conversely, only the L4 liposome significantly increased the median survival time of Fisher rats implanted with the F98 tumor, compared to free carboplatin. Neurotoxicity assays performed with the empty L4' liposome showed that the lipid components of L4 were not toxic. These results suggest that the positive charge on liposomes L1 and L2, which is known to promote binding to cell membrane, facilitates carboplatin accumulation in cancer cells explaining their higher efficacy in vitro. Conversely, negatively charged and pegylated liposome (L4) seems to diffuse over a larger distance in the tumor, and consequently significantly increased the median survival time of the animals. CONCLUSIONS: Selection of the best liposomal formulation based on in vitro studies or animal model can result in contradictory conclusions. The negatively charged and pegylated liposome (L4) which was the less efficient formulation in vitro showed the best therapeutic effect in animal model of GBM. These results support that relevant animal model of GBM must be considered to determine the optimal physicochemical properties of liposomal formulations.


Asunto(s)
Carboplatino/administración & dosificación , Carboplatino/uso terapéutico , Convección , Sistemas de Liberación de Medicamentos , Glioma/tratamiento farmacológico , Inyecciones , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Supervivencia Celular , Glioma/patología , Estimación de Kaplan-Meier , Dosificación Letal Mediana , Liposomas/ultraestructura , Ratas Endogámicas F344
13.
Phys Chem Chem Phys ; 19(11): 7897-7909, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28262861

RESUMEN

The "cold" low density plasma channels generated by the filamentation of powerful femtosecond laser pulses in aqueous solutions constitute a source of dense ionization. Here, we probed the radiation-assisted chemistry of water triggered by laser ionization via the radical-mediated synthesis of nanoparticles in gold chloride aqueous solutions. We showed that the formation of colloidal gold originates from the reduction of trivalent ionic gold initially present in solution by the reactive radicals (e.g. hydrated electrons) produced upon the photolysis of water. We analyzed both the reaction kinetics of the laser-induced hydrated electrons and the growth kinetics of the gold nanoparticles. Introduction of radical scavengers into the solutions and different initial concentrations of gold chloride provided information about the radical-mediated chemistry. The dense ionization results in the second order cross-recombination of the photolysis primary byproducts. Competition with recombination imposes the non-homogeneous interaction of reactive radicals with solute present in irradiated aqueous solutions. Such a laser-induced non-homogeneous chemistry suggests similarities with the radiation chemistry of water exposed to conventional densely ionizing radiation (high dose rate, high linear energy transfer).

14.
J Chem Phys ; 147(22): 224704, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29246047

RESUMEN

It has been proposed that organic molecules required for life on earth may be formed by the radiation processing of molecular ices in space environments, e.g., within our solar system. Such processes can be studied in the laboratory with surface science analytical techniques and by using low-energy electron (LEE) irradiation to simulate the effects of the secondary electrons that are generated in great abundance whenever ionizing radiation interacts with matter. Here we present new measurements of 70 eV LEE irradiation of multilayer films of CH4, 18O2, and CH4/18O2 mixtures (3:1 ratio) at 22 K. The electron stimulated desorption (ESD) yields of cations and anions have been recorded as a function of electron fluence. At low fluence, the prompt desorption of more massive multi-carbon or C-O containing cationic fragments agrees with our earlier measurements. However, new anion ESD signals of C2-, C2H-, and C2H2- from CH4/18O2 mixtures increase with fluence, indicating the gradual synthesis (and subsequent electron-induced fragmentation) of new, more complex species containing several C and possibly O atoms. Comparisons between the temperature programed desorption (TPD) mass spectra of irradiated and unirradiated films show the electron-induced formation of new chemical species, the identities of which are confirmed by reference to the NIST database of electron impact mass spectra and by TPD measurements of films composed of the proposed products. New species observed in the TPD of irradiated mixture films include C3H6, C2H5OH, and C2H6. Furthermore, X-ray photoelectron spectroscopy of irradiated films confirms the formation of C-O, C=O, and O=C-O- bonds of newly formed molecules. Our experiments support the view that secondary LEEs produced by ionizing radiation drive the chemistry in irradiated ices in space, irrespective of the radiation type.

15.
Invest New Drugs ; 34(3): 269-76, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26961906

RESUMEN

Results of clinical trials with oxaliplatin in treating glioblastoma are dismal. Previous works showed that intravenous (i.v.) delivery of oxaliplatin did not increase the survival of F98 glioma-bearing Fisher rats. Low accumulation of the drug in tumor cells is presumed to be responsible for the lack of antitumor effect. In the present study, convection-enhanced delivery (CED) was used to directly inject oxaliplatin in brain tumor implanted in rats. Since CED can led to severe toxicity, the liposomal formulation of oxaliplatin (Lipoxal™) was also assessed. The maximum tolerated dose (MTD) of oxaliplatin was 10 µg, while that of Lipoxal™ was increased by 3-times reaching 30 µg. Median survival time (MeST) of F98 glioma-bearing rats injected with 10 µg oxaliplatin by CED was 31 days, 7.5 days longer than untreated control (p = 0.0002); while CED of 30 µg Lipoxal™ reached the same result. Compared to previous study on i.v. delivery of these drugs, their injection by CED significantly increased their tumoral accumulations as well as MeSTs in the F98 glioma bearing rat model. The addition of radiotherapy (15 Gy) to CED of oxaliplatin or Lipoxal™ increased the MeST by 4.0 and 3.0 days, respectively. The timing of radiotherapy (4 h or 24 h after CED) produced similar results. However, the treatment was better tolerated when radiotherapy was performed 24 h after CED. In conclusion, a better tumoral accumulation was achieved when oxaliplatin and Lipoxal™ were injected by CED. The liposomal encapsulation of oxaliplatin reduced its toxic, while maintaining its antitumor potential.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Compuestos Organoplatinos/administración & dosificación , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Terapia Combinada , Sistemas de Liberación de Medicamentos , Glioma/patología , Glioma/radioterapia , Liposomas , Masculino , Dosis Máxima Tolerada , Compuestos Organoplatinos/efectos adversos , Compuestos Organoplatinos/farmacología , Oxaliplatino , Ratas , Ratas Endogámicas F344 , Tasa de Supervivencia , Factores de Tiempo
16.
Annu Rev Phys Chem ; 66: 379-98, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25580626

RESUMEN

Many experimental and theoretical advances have recently allowed the study of direct and indirect effects of low-energy electrons (LEEs) on DNA damage. In an effort to explain how LEEs damage the human genome, researchers have focused efforts on LEE interactions with bacterial plasmids, DNA bases, sugar analogs, phosphate groups, and longer DNA moieties. Here, we summarize the current understanding of the fundamental mechanisms involved in LEE-induced damage of DNA and complex biomolecule films. Results obtained by several laboratories on films prepared and analyzed by different methods and irradiated with different electron-beam current densities and fluencies are presented. Despite varied conditions (e.g., film thicknesses and morphologies, intrinsic water content, substrate interactions, and extrinsic atmospheric compositions), comparisons show a striking resemblance in the types of damage produced and their yield functions. The potential of controlling this damage using molecular and nanoparticle targets with high LEE yields in targeted radiation-based cancer therapies is also discussed.


Asunto(s)
Daño del ADN/efectos de la radiación , ADN/genética , Animales , Muerte Celular/efectos de la radiación , ADN/química , Electrones , Humanos , Radiación Ionizante
17.
Phys Chem Chem Phys ; 18(48): 32762-32771, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27878170

RESUMEN

Absolute cross sections (CSs) for the interaction of low energy electrons with condensed macromolecules are essential parameters to accurately model ionizing radiation induced reactions. To determine CSs for various conformational DNA damage induced by 2-20 eV electrons, we investigated the influence of the attenuation length (AL) and penetration factor (f) using a mathematical model. Solid films of supercoiled plasmid DNA with thicknesses of 10, 15 and 20 nm were irradiated with 4.6, 5.6, 9.6 and 14.6 eV electrons. DNA conformational changes were quantified by gel electrophoresis, and the respective yields were extrapolated from exposure-response curves. The absolute CS, AL and f values were generated by applying the model developed by Rezaee et al. The values of AL were found to lie between 11 and 16 nm with the maximum at 14.6 eV. The absolute CSs for the loss of the supercoiled (LS) configuration and production of crosslinks (CL), single strand breaks (SSB) and double strand breaks (DSB) induced by 4.6, 5.6, 9.6 and 14.6 eV electrons are obtained. The CSs for SSB are smaller, but similar to those for LS, indicating that SSB are the main conformational damage. The CSs for DSB and CL are about one order of magnitude smaller than those of LS and SSB. The value of f is found to be independent of electron energy, which allows extending the absolute CSs for these types of damage within the range 2-20 eV, from previous measurements of effective CSs. When comparison is possible, the absolute CSs are found to be in good agreement with those obtained from previous similar studies with double-stranded DNA. The high values of the absolute CSs of 4.6 and 9.6 eV provide quantitative evidence for the high efficiency of low energy electrons to induce DNA damage via the formation of transient anions.


Asunto(s)
Daño del ADN , Electrones , Modelos Moleculares , Animales , ADN , Humanos , Conformación de Ácido Nucleico
18.
Invest New Drugs ; 33(3): 555-63, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25784204

RESUMEN

The prognosis for patients with glioblastoma remains poor with current treatments. Although platinum-based drugs are sometimes offered at relapse, their efficacy in this setting is still disputed. In this study, we use convection-enhanced delivery (CED) to deliver the platinum-based drugs (cisplatin, carboplatin, and Lipoplatin(TM) - liposomal formulation of cisplatin) directly into the tumor of F98 glioma-bearing rats that were subsequently treated with γ radiation (15 Gy). CED increased by factors varying between 17 and 111, the concentration of these platinum-based drugs in the brain tumor compared to intra-venous (i.v.) administration, and by 9- to 34-fold, when compared to intra-arterial (i.a.) administration. Furthermore, CED resulted in a better systemic tolerance to platinum drugs compared to their i.a. injection. Among the drugs tested, carboplatin showed the highest maximum tolerated dose (MTD). Treatment with carboplatin resulted in the best median survival time (MeST) (38.5 days), which was further increased by the addition of radiotherapy (54.0 days). Although the DNA-bound platinum adduct were higher at 4 h after CED than 24 h for carboplatin group, combination with radiotherapy led to similar improvement of median survival time. However, less toxicity was observed in animals irradiated 24 h after CED-based chemotherapy. In conclusion, CED increased the accumulation of platinum drugs in tumor, reduced the toxicity, and resulted in a higher median survival time. The best treatment was obtained in animals treated with carboplatin and irradiated 24 h later.


Asunto(s)
Cisplatino/uso terapéutico , Convección , Sistemas de Liberación de Medicamentos , Glioma/tratamiento farmacológico , Glioma/radioterapia , Platino (Metal)/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Cisplatino/efectos adversos , Terapia Combinada , Modelos Animales de Enfermedad , Dosis Máxima Tolerada , Platino (Metal)/efectos adversos , Ratas Endogámicas F344 , Reproducibilidad de los Resultados , Análisis de Supervivencia , Pruebas de Toxicidad Aguda
19.
J Chem Phys ; 140(15)2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26792947

RESUMEN

The energy dependence of the yields of single and double strand breaks (SSB and DSB) and crosslinks induced by electron impact on plasmid DNA films is measured in the 2-20 eV range. The yield functions exhibit two strong maxima, which are interpreted to result from the formation of core-excited resonances (i.e., transient anions) of the bases, and their decay into the autoionization channel, resulting in π → π* electronic transitions of the bases followed by electron transfer to the C-O σ* bond in the phosphate group. Occupancy of the σ* orbital ruptures the C-O bond of the backbone via dissociative electron attachment, producing a SSB. From a comparison of our results with those of other works, including theoretical calculations and electron-energy-loss spectra of the bases, the 4.6 eV peak in the SSB yield function is attributed to the resonance decay into the lowest electronically excited states of the bases; in particular, those resulting from the transitions 13A'(π2 → π3*) and 13A″(n2 → π3*) of thymine and 13A'(π → π*) of cytosine. The strongest peak at 9.6 eV in the SSB yield function is also associated with electron captured by excited states of the bases, resulting mostly from a multitude of higher-energy π → π* transitions. The DSB yield function exhibits strong maxima at 6.1 and 9.6 eV. The peak at 9.6 eV is probably related to the same resonance manifold as that leading to SSB, but the other at 6.1 eV may be more restricted to decay into the electronic state 13A' (π → π*) of cytosine via autoionization. The yield function of crosslinks is dominated by a broad peak extending over the 3.6-11.6 eV range with a sharper one at 17.6 eV. The different line shape of the latter function, compared to that of SSB and DSB, appears to be due to the formation of reactive radical sites in the initial supercoiled configuration of the plasmid, which react with the circular form (i.e., DNA with a SSB) to produce a crosslink.

20.
J Phys Chem B ; 128(17): 4053-4062, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38652830

RESUMEN

Low-energy (<20 eV) electrons (LEEs) can resonantly interact with DNA to form transient anions (TAs) of fundamental units, inducing single-strand breaks (SSBs), and cluster damage, such as double-strand breaks (DSBs). Shape resonances, which arise from electron capture in a previously unfilled orbital, can induce only a SSB, whereas a single core-excited resonance (i.e., two electrons in excited orbitals of the field of a hole) has been shown experimentally to cause cluster lesions. Herein, we show from time-dependent density functional theory (TDDFT) that a core-excited resonance can produce a DSB, i.e., a single 5 eV electron can induce two close lesions in DNA. We considered the nucleotide with the G-C base pair (ds[5'-G-3']) as a model for electron localization in the DNA double helix and calculated the potential energy surfaces (PESs) of excited states of the ground-state TA of ds[5'-G-3'], which correspond to shape and core-excited resonances. The calculations show that shape TAs start at ca. 1 eV, while core-excited TAs occur only above 4 eV. The energy profile of each excited state and the corresponding PES are obtained by simultaneously stretching both C5'-O5' bonds of ds[5'-G-3']. From the nature of the PES, we find two dissociative (σ*) states localized on the PO4 groups at the C5' sites of ds[5'-G-3']. The first σ* state at 1 eV is due to a shape resonance, while the second σ* state is induced by a core-excited resonance at 5.4 eV. As the bond of the latter state stretches and arrives close to the dissociation limit, the added electron on C transfers to C5' phosphate, thus demonstrating the possibility of producing a DSB with only one electron of ca. 5 eV.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN , Teoría Funcional de la Densidad , Electrones , ADN/química , Roturas del ADN de Doble Cadena/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA