Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Exp Physiol ; 104(8): 1274-1285, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31168842

RESUMEN

NEW FINDINGS: What is the central question of this study? The aim of this study was to examine the effects of resistance training on gains in the external mechanical power output developed during climbing and myofibrillar ATPase activity in rats. What is the main finding and its importance? Using rapid flow quench experiments, we show that resistance training increases both the power output and the myofibrillar ATPase activity in the flexor digitorum profundus, biceps and deltoid muscles. Data fitting reveals that these functional ameliorations are explained by an increase in the rate constant of liberation of ATP hydrolysis products and contribute to performance gains. ABSTRACT: Skeletal muscle shows a remarkable plasticity that permits functional adaptations in response to different stimulations. To date, modifications of the proportions of myosin heavy chain (MHC) isoforms and increases in fibre size are considered to be the main factors providing sarcomeric plasticity in response to exercise training. In this study, we investigated the effects of a resistance training protocol on the myofibrillar ATPase (m-ATPase) cycle, muscle performance (power output) and MHC gene expression. For this purpose, 8-week-old Wistar Han rats were subjected to 4 weeks of resistance training, with five sessions per week. Muscle samples of flexor digitorum profundus (FDP), biceps and deltoid were collected and subjected to RT-qPCR analyses and assessment of m-ATPase activity with rapid flow quench apparatus. Training led to a significant increase in muscle mass, except for the biceps, and in total mechanical power output (+135.7%, P < 0.001). A shift towards an intermediate fibre type (i.e. MHC2x-to-MHC2a isoform transition) was also observed in biceps and FDP but not in the deltoid muscle. Importantly, rapid flow quench experiments revealed an enhancement of the m-ATPase activity during contraction at maximal velocity (kF ) in the three muscles, with a more marked effect in FDP (+242%, P < 0.001). Data fitting revealed that the rate constant of liberation of ATP hydrolysis products (k3 ) appears to be the main factor influencing the increase in m-ATPase activity. In conclusion, the data showed that, in addition to classically observed changes in MHC isoform content and fibre hypertrophy, m-ATPase activity is enhanced during resistance training and might contribute significantly to performance gains.


Asunto(s)
Adaptación Fisiológica/fisiología , Adenosina Trifosfatasas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/fisiología , Aclimatación/fisiología , Animales , Hipertrofia/metabolismo , Hipertrofia/fisiopatología , Contracción Muscular/fisiología , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/fisiología , Ratas , Ratas Wistar , Entrenamiento de Fuerza/métodos , Sarcómeros/metabolismo , Sarcómeros/fisiología
2.
J Biol Chem ; 292(5): 1899-1909, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28011640

RESUMEN

Autophagy involves the lysosomal degradation of cytoplasmic contents for regeneration of anabolic substrates during nutritional or inflammatory stress. Its initiation occurs rapidly after inactivation of the protein kinase mammalian target of rapamycin (mTOR) (or mechanistic target of rapamycin), leading to dephosphorylation of Unc-51-like kinase 1 (ULK1) and autophagosome formation. Recent studies indicate that mTOR can, in parallel, regulate the activity of stress transcription factors, including signal transducer and activator of transcription-1 (STAT1). The current study addresses the role of STAT1 as a transcriptional suppressor of autophagy genes and autophagic activity. We show that STAT1-deficient human fibrosarcoma cells exhibited enhanced autophagic flux as well as its induction by pharmacological inhibition of mTOR. Consistent with enhanced autophagy initiation, ULK1 mRNA and protein levels were increased in STAT1-deficient cells. By chromatin immunoprecipitation, STAT1 bound a putative regulatory sequence in the ULK1 5'-flanking region, the mutation of which increased ULK1 promoter activity, and rendered it unresponsive to mTOR inhibition. Consistent with an anti-apoptotic effect of autophagy, rapamycin-induced apoptosis and cytotoxicity were blocked in STAT1-deficient cells but restored in cells simultaneously exposed to the autophagy inhibitor ammonium chloride. In vivo, skeletal muscle ULK1 mRNA and protein levels as well as autophagic flux were significantly enhanced in STAT1-deficient mice. These results demonstrate a novel mechanism by which STAT1 negatively regulates ULK1 expression and autophagy.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/biosíntesis , Autofagia/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Factor de Transcripción STAT1/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Línea Celular Tumoral , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas/fisiología , Factor de Transcripción STAT1/genética , Sirolimus/farmacología
3.
Biochem Biophys Res Commun ; 499(3): 493-498, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29580989

RESUMEN

AMP-activated protein kinase (AMPK) is a critical enzyme in conditions of cellular energy deficit such as exercise, hypoxia or nutritional stress. AMPK is well known to regulate protein degradation pathways notably through FOXO-related axis. In this study, we investigated the implication of AMPK activation in FOXO3 expression and stability in skeletal muscle primary myotubes. First, time course and dose response studies revealed optimal AICAR treatment duration and dose in skeletal muscle cells. Then, experiments with cycloheximide treatment of primary myotubes highlighted that AICAR infusion extends FOXO3 protein half-life. Our results also showed that AICAR treatment or nutrient depletion increases FOXO3 expression in primary myotubes and the expression of the mitochondrial E3 ligase Mul1 involved in mitochondrial turnover (mitophagy). In AMPK KO cells, nutrient depletion failed to alter the level of some FOXO3-dependent atrophic genes, including LC3B, BNIP3, and the mitochondrial E3 ligase Mul1, but not the expression of other genes (i.e. FOXO1, Gabarapl1, MAFbx, MuRF1). In summary, our data highlight that AMPK stabilizes FOXO3 and suggest a role in the first initiation step of mitochondrial segregation in muscle cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Proteína Forkhead Box O3/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Ribonucleótidos/farmacología , Proteínas Quinasas Activadas por AMP/deficiencia , Aminoimidazol Carboxamida/farmacología , Animales , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Fibras Musculares Esqueléticas/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Inanición/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
J Sports Sci ; 36(18): 2045-2052, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29394148

RESUMEN

This study exanimated the effects of intermittent hypoxic training (IHT) conducted at a high level of hypoxia with recovery at ambient air on aerobic/anaerobic capacities at sea level and hematological variations. According to a double-blind randomized design, fifteen highly endurance-trained runners completed a 6-weeks regimented training with 3 sessions per week consisting of intermittent runs (6x work-rest ratio of 5':5') on a treadmill at 80-85% of maximal aerobic speed ([Formula: see text]). Nine athletes (hypoxic group, HG) performed the exercise bouts at FI02 = 10.6-11.4% while six athletes (normoxic group, NG) exercised at ambient air. Running time to exhaustion at a velocity corresponding to 95% [Formula: see text] significantly increased for HG while no effect was found for NG. Regarding [Formula: see text], no significant effects were found in either training group. In addition, the decline of jumping performances over a 45s-continuous maximal vertical jump test (i.e. anaerobic capacity index) tended to be lower in HG compared to NG. The levels of the studied hematological variables, including erythropoietin and hematocrit, did not significantly change for either HG or NG. These results highlight that our IHT protocol may induce additional effects on aerobic performance without compromising the anaerobic capacity index in highly-trained athletes.


Asunto(s)
Altitud , Hipoxia/fisiopatología , Acondicionamiento Físico Humano/métodos , Resistencia Física/fisiología , Carrera/fisiología , Adaptación Fisiológica , Estudios Cruzados , Método Doble Ciego , Eritropoyetina/metabolismo , Hematócrito , Humanos , Masculino , Factores de Tiempo
9.
Cell Mol Life Sci ; 71(9): 1657-71, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24232446

RESUMEN

Forkhead box class O family member proteins (FoxOs) are highly conserved transcription factors with important roles in cellular homeostasis. The four FoxO members in humans, FoxO1, FoxO3, FoxO4, and FoxO6, are all expressed in skeletal muscle, but the first three members are the most studied in muscle. In this review, we detail the multiple modes of FoxO regulation and discuss the central role of these proteins in the control of skeletal muscle plasticity. FoxO1 and FoxO3 are key factors of muscle energy homeostasis through the control of glycolytic and lipolytic flux, and mitochondrial metabolism. They are also key regulators of protein breakdown, as they modulate the activity of several actors in the ubiquitin­proteasome and autophagy­lysosomal proteolytic pathways, including mitochondrial autophagy, also called mitophagy. FoxO proteins have also been implicated in the regulation of the cell cycle, apoptosis, and muscle regeneration. Depending of their activation level, FoxO proteins can exhibit ambivalent functions. For example, a basal level of FoxO factors is necessary for cellular homeostasis and these proteins are required for adaptation to exercise. However, exacerbated activation may occur in the course of several diseases, resulting in metabolic disorders and atrophy. A better understanding of the precise functions of these transcriptions factors should thus lead to the development of new therapeutic approaches to prevent or limit the muscle wasting that prevails in numerous pathological states, such as immobilization, denervated conditions, neuromuscular disease, aging, AIDS, cancer, and diabetes.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Músculo Esquelético/metabolismo , Animales , Autofagia , Metabolismo Energético , Factores de Transcripción Forkhead/química , Humanos , Mitocondrias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo
11.
Am J Physiol Regul Integr Comp Physiol ; 307(8): R956-69, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25121614

RESUMEN

Physical exercise is a stress that can substantially modulate cellular signaling mechanisms to promote morphological and metabolic adaptations. Skeletal muscle protein and organelle turnover is dependent on two major cellular pathways: Forkhead box class O proteins (FOXO) transcription factors that regulate two main proteolytic systems, the ubiquitin-proteasome, and the autophagy-lysosome systems, including mitochondrial autophagy, and the MTORC1 signaling associated with protein translation and autophagy inhibition. In recent years, it has been well documented that both acute and chronic endurance exercise can affect the autophagy pathway. Importantly, substantial efforts have been made to better understand discrepancies in the literature on its modulation during exercise. A single bout of endurance exercise increases autophagic flux when the duration is long enough, and this response is dependent on nutritional status, since autophagic flux markers and mRNA coding for actors involved in mitophagy are more abundant in the fasted state. In contrast, strength and resistance exercises preferentially raise ubiquitin-proteasome system activity and involve several protein synthesis factors, such as the recently characterized DAGK for mechanistic target of rapamycin activation. In this review, we discuss recent progress on the impact of acute and chronic exercise on cell component turnover systems, with particular focus on autophagy, which until now has been relatively overlooked in skeletal muscle. We especially highlight the most recent studies on the factors that can impact its modulation, including the mode of exercise and the nutritional status, and also discuss the current limitations in the literature to encourage further works on this topic.


Asunto(s)
Autofagia/fisiología , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/fisiología , Resistencia Física/fisiología , Animales , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/fisiología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Mitocondrias/fisiología , Complejos Multiproteicos/fisiología , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/fisiología
12.
Front Physiol ; 15: 1339284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357500

RESUMEN

Introduction: Repeated sprint cycling exercises (RSE) performed under systemic normobaric hypoxia (HYP) or with blood flow restriction (BFR) are of growing interest. To the best of our knowledge, there is no stringent consensus on the cardiorespiratory and neuromuscular responses between systemic HYP and BFR during RSE. Thus, this study assessed cardiorespiratory and neuromuscular responses to multiple sets of RSE under HYP or with BFR. Methods: According to a crossover design, fifteen men completed RSE (three sets of five 10-s sprints with 20 s of recovery) in normoxia (NOR), HYP, and with bilaterally-cuffed BFR at 45% of resting arterial occlusive pressure during sets in NOR. Power output, cardiorespiratory and neuromuscular responses were assessed. Results: Average peak and mean powers were lower in BFR (dz = 0.87 and dz = 1.23, respectively) and HYP (dz = 0.65 and dz = 1.21, respectively) compared to NOR (p < 0.001). The percentage decrement of power output was greater in BFR (dz = 0.94) and HYP (dz = 0.64) compared to NOR (p < 0.001), as well as in BFR compared to NOR (p = 0.037, dz = 0.30). The percentage decrease of maximal voluntary contraction of the knee extensors after the session was greater in BFR compared to NOR and HYP (p = 0.011, dz = 0.78 and p = 0.027, dz = 0.75, respectively). Accumulated ventilation during exercise was higher in HYP and lower in BFR (p = 0.002, dz = 0.51, and p < 0.001, dz = 0.71, respectively). Peak oxygen consumption was reduced in HYP (p < 0.001, dz = 1.47). Heart rate was lower in BFR during exercise and recovery (p < 0.001, dz = 0.82 and p = 0.012, dz = 0.43, respectively). Finally, aerobic contribution was reduced in HYP compared to NOR (p = 0.002, dz = 0.46) and BFR (p = 0.005, dz = 0.33). Discussion: Thus, this study indicates that power output during RSE is impaired in HYP and BFR and that BFR amplifies neuromuscular fatigue. In contrast, HYP did not impair neuromuscular function but enhanced the ventilatory response along with reduced oxygen consumption.

13.
Physiol Rep ; 12(11): e16044, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38849292

RESUMEN

This crossover study evaluated DNA methylation changes in human salivary samples following single sprint interval training sessions performed in hypoxia, with blood flow restriction (BFR), or with gravity-induced BFR. Global DNA methylation levels were evaluated with an enzyme-linked immunosorbent assay. Methylation-sensitive restriction enzymes were used to determine the percentage methylation in a part of the promoter of the gene-inducible nitric oxide synthase (p-iNOS), as well as an enhancer (e-iNOS). Global methylation increased after exercise (p < 0.001; dz = 0.50). A tendency was observed for exercise × condition interaction (p = 0.070). Post hoc analyses revealed a significant increase in global methylation between pre- (7.2 ± 2.6%) and postexercise (10.7 ± 2.1%) with BFR (p = 0.025; dz = 0.69). Methylation of p-iNOS was unchanged (p > 0.05). Conversely, the methylation of e-iNOS increased from 0.6 ± 0.4% to 0.9 ± 0.8% after exercise (p = 0.025; dz = 0.41), independently of the condition (p > 0.05). Global methylation correlated with muscle oxygenation during exercise (r = 0.37, p = 0.042), while e-iNOS methylation showed an opposite association (r = -0.60, p = 0.025). Furthermore, p-iNOS methylation was linked to heart rate (r = 0.49, p = 0.028). Hence, a single sprint interval training increases global methylation in saliva, and adding BFR tends to increase it further. Lower muscle oxygenation is associated with augmented e-iNOS methylation. Finally, increased cardiovascular strain results in increased p-iNOS methylation.


Asunto(s)
Metilación de ADN , Entrenamiento de Intervalos de Alta Intensidad , Hipoxia , Flujo Sanguíneo Regional , Saliva , Humanos , Masculino , Hipoxia/metabolismo , Hipoxia/fisiopatología , Hipoxia/genética , Proyectos Piloto , Adulto , Entrenamiento de Intervalos de Alta Intensidad/métodos , Saliva/metabolismo , Estudios Cruzados , Ejercicio Físico/fisiología , Adulto Joven
15.
Eur J Appl Physiol ; 113(2): 411-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22767151

RESUMEN

This study aimed to investigate the effects on a possible improvement in aerobic and anaerobic performance of oral terbutaline (TER) at a supra-therapeutic dose in 7 healthy competitive male athletes. On day 1, ventilatory threshold, maximum oxygen uptake [Formula: see text] and corresponding power output were measured and used to determine the exercise load on days 2 and 3. On days 2 and 3, 8 mg of TER or placebo were orally administered in a double-blind process to athletes who rested for 3 h, and then performed a battery of tests including a force-velocity exercise test, running sprint and a maximal endurance cycling test at Δ50 % (50 % between VT and [Formula: see text]). Lactatemia, anaerobic parameters and endurance performance ([Formula: see text] and time until exhaustion) were raised during the corresponding tests. We found that TER administration did not improve any of the parameters of aerobic performance (p > 0.05). In addition, no change in [Formula: see text] kinetic parameters was found with TER compared to placebo (p > 0.05). Moreover, no enhancement of the force-velocity relationship was observed during sprint exercises after TER intake (p > 0.05) and, on the contrary, maximal strength decreased significantly after TER intake (p < 0.05) but maximal power remained unchanged (p > 0.05). In conclusion, oral acute administration of TER at a supra-therapeutic dose seems to be without any relevant ergogenic effect on anaerobic and aerobic performances in healthy athletes. However, all participants experienced adverse side effects such as tremors.


Asunto(s)
Rendimiento Atlético/fisiología , Sustancias para Mejorar el Rendimiento/administración & dosificación , Resistencia Física/efectos de los fármacos , Resistencia Física/fisiología , Terbutalina/administración & dosificación , Administración Oral , Agonistas de Receptores Adrenérgicos beta 2/administración & dosificación , Adulto , Asma/tratamiento farmacológico , Asma/fisiopatología , Broncodilatadores/administración & dosificación , Método Doble Ciego , Humanos , Masculino , Resultado del Tratamiento
16.
J Sports Sci ; 31(14): 1510-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23656356

RESUMEN

The aim of the study is the modelling of training responses with a variable dose-response model in a sport discipline that requires highly complex coordination. We propose a method to optimise the training programme plan using the potential maximal performance gain associated with overload and tapering periods. Data from five female elite gymnasts were collected over a 3-month training period. The relationship between training amounts and performance was then assessed with a non-linear model. The optimal magnitude of training load reduction and its duration were investigated with and without an overload period using simulation procedures based on individual responses to training. The correlation between actual and modelled performances was significant (R² = 0.81 ± 0.02, P < 0.01). The standard error was 2.7%. Simulations revealed that taper preceded by an overload period allows a higher performance to be achieved compared to an absence of overload period (106.3 ± 0.3% vs. 105.1 ± 0.3%). With respect to the pre-taper load, the model predicts that optimal load reductions during taper were 48.4 ± 0.7% and 42.5 ± 1.0% for overloading and non-overloading strategies, respectively. Moreover, optimal durations of the taper period were 34 ± 0.5 days and 22 ± 0.5 days for overloading and non-overloading strategies, respectively. In conclusion, the study showed that the variable dose-response model describes precisely the training response in gymnasts.


Asunto(s)
Rendimiento Atlético/fisiología , Gimnasia/fisiología , Acondicionamiento Físico Humano/fisiología , Educación y Entrenamiento Físico/métodos , Aptitud Física/fisiología , Adolescente , Femenino , Humanos , Modelos Biológicos
17.
Am J Physiol Cell Physiol ; 303(5): C475-85, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22700795

RESUMEN

The AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that acts as a sensor of cellular energy status switch regulating several systems including glucose and lipid metabolism. Recently, AMPK has been implicated in the control of skeletal muscle mass by decreasing mTORC1 activity and increasing protein degradation through regulation of ubiquitin-proteasome and autophagy pathways. In this review, we give an overview of the central role of AMPK in the control of skeletal muscle plasticity. We detail particularly its implication in the control of the hypertrophic and atrophic signaling pathways. In the light of these cumulative and attractive results, AMPK appears as a key player in regulating muscle homeostasis and the modulation of its activity may constitute a therapeutic potential in treating muscle wasting syndromes in humans.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Humanos
18.
J Cell Biochem ; 113(2): 695-710, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22006269

RESUMEN

In skeletal muscle, protein levels are determined by relative rates of protein synthesis and breakdown. The balance between synthesis and degradation of intracellular components determines the overall muscle fiber size. AMP-activated protein kinase (AMPK), a sensor of cellular energy status, was recently shown to increase myofibrillar protein degradation through the expression of MAFbx and MuRF1. In the present study, the effect of AMPK activation by AICAR on autophagy was investigated in muscle cells. Our results show that FoxO3a transcription factor activation by AMPK induces the expression of the autophagy-related proteins LC3B-II, Gabarapl1, and Beclin1 in primary mouse skeletal muscle myotubes and in the Tibialis anterior (TA) muscle. Time course studies reveal that AMPK activation by AICAR leads to a transient nuclear relocalization of FoxO3a followed by an increase of its cytosolic level. Moreover, AMPK activation leads to the inhibition of mTORC1 and its subsequent dissociation of Ulk1, Atg13, and FIP200 complex. Interestingly, we identify Ulk1 as a new interacting partner of AMPK in muscle cells and we show that Ulk1 is associated with AMPK under normal conditions and dissociates from AMPK during autophagy process. Moreover, we find that AMPK phosphorylates FoxO3a and Ulk1. In conclusion, our data show that AMPK activation stimulates autophagy in skeletal muscle cells through its effects on the transcriptional function of FoxO3a and takes part in the initiation of autophagosome formation by interacting with Ulk1. Here, we present new evidences that AMPK plays a crucial role in the fine tuning of protein expression programs that control skeletal muscle mass.


Asunto(s)
Adenilato Quinasa/fisiología , Autofagia , Factores de Transcripción Forkhead/metabolismo , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Adenilato Quinasa/metabolismo , Secuencia de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia , Línea Celular , Secuencia Conservada , Activación Enzimática , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/química , Expresión Génica , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Complejos Multiproteicos , Fibras Musculares Esqueléticas/enzimología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Atrofia Muscular , Fosforilación , Cultivo Primario de Células , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Transporte de Proteínas , Proteínas/metabolismo , Ribonucleótidos , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
19.
Eur J Appl Physiol ; 112(9): 3251-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22230921

RESUMEN

This study aimed to clarify the controversial effects of acute and short-term salbutamol (SAL) intake on sprint performance in healthy athletes. Based on the results of previous studies, an anabolic effect for the short-term treatment and increased glycolysis in both treatments were hypothesized. Eight male recreational athletes completed force-velocity exercise tests after administration of placebo (gelatin), acute oral SAL (6 mg) or short-term oral SAL (12 mg day(-1) for 3 weeks), using a double-blind and randomized protocol. A friction-loaded cycle ergometer fitted with a strain gauge, and an incremental encoder ensured accurate measurement of the force-velocity relationship during sprints. Mechanical data were averaged during each pedal downstroke. Compared with placebo after both acute and 3 weeks of continuous treatment, the force-velocity relationship shifted to the right with power output gains of 14 and 8% (p < 0.001), respectively. This effect was less marked for 3 weeks of continuous treatment compared with acute administration (p < 0.001), suggesting a down-regulation in adrenoceptors. Our first hypothesis thus seems rejected. Significantly higher end-of-exercise and recovery blood lactate concentrations were found under SAL compared with placebo (p < 0.001), supporting our second hypothesis. In conclusion, these data indicate that oral administration of SAL is an effective ergogenic aid for sprint exercise in non-asthmatic athletes. Moreover, an acute treatment seems to be more effective than 3 weeks of continuous treatment.


Asunto(s)
Albuterol/farmacología , Atletas , Fuerza Muscular/efectos de los fármacos , Aceleración , Administración Oral , Adulto , Albuterol/administración & dosificación , Asma/fisiopatología , Broncodilatadores/administración & dosificación , Broncodilatadores/farmacología , Estudios Cruzados , Método Doble Ciego , Ejercicio Físico/fisiología , Volumen Espiratorio Forzado/efectos de los fármacos , Volumen Espiratorio Forzado/fisiología , Humanos , Masculino , Fuerza Muscular/fisiología , Placebos , Factores de Tiempo , Adulto Joven
20.
Front Physiol ; 13: 864642, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923232

RESUMEN

This study compared the kinetics of muscle deoxygenation and reoxygenation during a sprint interval protocol performed under four modalities: blood flow restriction at 60% of the resting femoral artery occlusive pressure (BFR), gravity-induced BFR (G-BFR), simulated hypoxia (FiO2≈13%, HYP) and normoxia (NOR). Thirteen healthy men performed each session composed of five all-out 30-s efforts interspaced with 4 min of passive recovery. Total work during the exercises was 17 ± 3.4, 15.8 ± 2.9, 16.7 ± 3.4, and 18.0 ± 3.0 kJ for BFR, G-BFR, HYP and NOR, respectively. Muscle oxygenation was continuously measured with near-infrared spectroscopy. Tissue saturation index (TSI) was modelled with a linear function at the beginning of the sprint and reoxygenation during recovery with an exponential function. Results showed that both models were adjusted to the TSI (R2 = 0.98 and 0.95, respectively). Greater deoxygenation rates were observed in NOR compared to BFR (p = 0.028). No difference was found between the conditions for the deoxygenation rates relative to sprint total work (p > 0.05). Concerning reoxygenation, the amplitude of the exponential was not different among conditions (p > 0.05). The time delay of reoxygenation was longer in BFR compared to the other conditions (p < 0.05). A longer time constant was found for G-BFR compared to the other conditions (p < 0.05), and mean response time was longer for BFR and G-BFR. Finally, sprint performance was correlated with faster reoxygenation. Hence, deoxygenation rates were not different between the conditions when expressed relatively to total sprint work. Furthermore, BFR conditions impair reoxygenation: BFR delays and G-BFR slows down reoxygenation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA