Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioconjug Chem ; 29(8): 2654-2664, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29979588

RESUMEN

Protein-ligand conjugations are usually carried out in aqueous media in order to mimic the environment within which the conjugates will be used. In this work, we focus on the conjugation of amphiphilic variants of elastin-like polypeptide (ELP), short elastin (sEL), to poorly water-soluble compounds like OPPVs ( p-phenylenevinylene oligomers), triarylamines, and polypyridine-metal complexes. These conjugations are problematic when carried out in aqueous phase because hydrophobic ligands tend to avoid exposure to water, which in turn causes the ligand to self-aggregate and/or interact noncovalently with hydrophobic regions of the amphiphile. Ultimately, this behavior leads to low conjugation efficiency and contamination with strong noncovalent "conjugates". After exploring the solubility of sEL in various organic solvents, we have established an efficient conjugation methodology for obtaining covalent conjugates virtually free of contaminating noncovalent complexes. When conjugating carboxylated ligands to the amphiphile amines, we demonstrate that even when only one amine (the N-terminus) is present, its derivatization is 98% efficient. When conjugating amine moieties to the amphiphile carboxyls (a problematic configuration), protein multimerization is avoided, 98-100% of the protein is conjugated, and the unreacted ligand is recovered in pure form. Our syntheses occur in "one pot", and our purification procedure is a simple workup utilizing a combination of water and organic solvent extractions. This conjugation methodology might provide a solution to problems arising from solubility mismatch of protein and ligand, and it is likely to be widely applied for modification of recombinant amphiphiles used for drug delivery (PEG-antibodies, polymer-enzymes, food proteins), cell adhesion (collagen, hydrophobins), synthesis of nanostructures (peptides), and engineering of biocompatible optoelectronics (biological polymers), to cite a few.


Asunto(s)
Aminas/química , Elastina/química , Metales/química , Compuestos Orgánicos/química , Polímeros/química , Piridinas/química , Solventes/química , Electroforesis en Gel de Poliacrilamida , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Multimerización de Proteína , Espectroscopía de Protones por Resonancia Magnética , Solubilidad , Espectrofotometría Ultravioleta
2.
BMC Microbiol ; 13: 270, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24279426

RESUMEN

BACKGROUND: Single cell genomics has revolutionized microbial sequencing, but complete coverage of genomes in complex microbiomes is imperfect due to enormous variation in organismal abundance and amplification bias. Empirical methods that complement rapidly improving bioinformatic tools will improve characterization of microbiomes and facilitate better genome coverage for low abundance microbes. METHODS: We describe a new approach to sequencing individual species from microbiomes that combines antibody phage display against intact bacteria with fluorescence activated cell sorting (FACS). Single chain (scFv) antibodies are selected using phage display against a bacteria or microbial community, resulting in species-specific antibodies that can be used in FACS for relative quantification of an organism in a community, as well as enrichment or depletion prior to genome sequencing. RESULTS: We selected antibodies against Lactobacillus acidophilus and demonstrate a FACS-based approach for identification and enrichment of the organism from both laboratory-cultured and commercially derived bacterial mixtures. The ability to selectively enrich for L. acidophilus when it is present at a very low abundance (<0.2%) leads to complete (>99.8%) de novo genome coverage whereas the standard single-cell sequencing approach is incomplete (<68%). We show that specific antibodies can be selected against L. acidophilus when the monoculture is used as antigen as well as when a community of 10 closely related species is used demonstrating that in principal antibodies can be generated against individual organisms within microbial communities. CONCLUSIONS: The approach presented here demonstrates that phage-selected antibodies against bacteria enable identification, enrichment of rare species, and depletion of abundant organisms making it tractable to virtually any microbe or microbial community. Combining antibody specificity with FACS provides a new approach for characterizing and manipulating microbial communities prior to genome sequencing.


Asunto(s)
Anticuerpos Antibacterianos/metabolismo , Carga Bacteriana/métodos , Citometría de Flujo/métodos , Lactobacillus acidophilus/aislamiento & purificación , Microbiota , Análisis de Secuencia de ADN/métodos , Anticuerpos de Cadena Única/metabolismo , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/aislamiento & purificación , Técnicas de Visualización de Superficie Celular , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/inmunología , Datos de Secuencia Molecular , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/aislamiento & purificación
3.
Anal Chem ; 84(21): 9169-75, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23066794

RESUMEN

Analytical capabilities to identify dyes associated with structurally robust wool fibers would critically assist crime-scene and explosion-scene forensics. Nondestructive separation of dyes from wool, removal of contaminants, and dye analysis by MALDI- or ESI-MS, were achieved in a single-pot, ionic liquid-based method. Ionic liquids (ILs) that readily denature the wool α-keratin structure have been identified and are conducive to small volume, high-throughput analysis for accelerated threat-response times. Wool dyed with commercial or natural, plant-based dyes have unique signatures that allow classification and matching of samples and identification of dyestuffs. Wool released 0.005 mg of dye per mg of dyed wool into the IL, allowing for analysis of single-thread sample sizes. The IL + dye mixture promotes sufficient ionization in MALDI-MS: addition of common MALDI matrices does not improve analysis of anionic wool dyes. An inexpensive, commercially available tetrabutylphosponium chloride IL was discovered to be capable of denaturing wool and was determined to be the most effective for this readily fieldable method.


Asunto(s)
Colorantes/análisis , Colorantes/aislamiento & purificación , Líquidos Iónicos/química , Lana/química , Animales , Colorantes/química , Límite de Detección , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
Anal Chem ; 83(8): 2921-30, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21410201

RESUMEN

Room temperature ionic liquids, or RTILs, based on tetraalkylphosphonium (PR(4)(+)) cations were used as the basis of a platform that enables separation of dyes from textiles, extraction of dyes from aqueous solution, and identification of the dyes by MALDI-MS in a single experimental step for forensic purposes. Ionic liquids were formed with PR(4)(+) cations and ferulate (FA), α-cyano-4-hydroxycinnamate (CHCA), and 2,5-dihydroxybenzoate (DHB) anions. The use of tetraalkylphosphonium-based ionic liquids in MALDI-MS allowed detection of small molecule dyes without addition of a traditional solid MALDI matrix.


Asunto(s)
Colorantes/análisis , Líquidos Iónicos/química , Compuestos Organofosforados/química , Líquidos Iónicos/síntesis química , Estructura Molecular , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Estereoisomerismo
5.
Toxins (Basel) ; 11(4)2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30987300

RESUMEN

Mycolactone, the amphiphilic macrolide toxin secreted by Mycobacterium ulcerans, plays a significant role in the pathology and manifestations of Buruli ulcer (BU). Consequently, it follows that the toxin is a suitable target for the development of diagnostics and therapeutics for this disease. Yet, several challenges have deterred such development. For one, the lipophilic nature of the toxin makes it difficult to handle and store and contributes to variability associated with laboratory experimentation and purification yields. In this manuscript, we have attempted to incorporate our understanding of the lipophilicity of mycolactone in order to define the optimal methods for the storage, handling, and purification of this toxin. We present a systematic correlation of variability associated with measurement techniques (thin-layer chromatography (TLC), mass spectrometry (MS), and UV-Vis spectrometry), storage conditions, choice of solvents, as well as the impact of each of these on toxin function as assessed by cellular cytotoxicity. We also compared natural mycolactone extracted from bacterial culture with synthesized toxins in laboratory (solvents, buffers) and physiologically relevant (serum) matrices. Our results point to the greater stability of mycolactone in organic, as well as detergent-containing, solvents, regardless of the container material (plastic, glass, or silanized tubes). They also highlight the presence of toxin in samples that may be undetectable by any one technique, suggesting that each detection approach captures different configurations of the molecule with varying specificity and sensitivity. Most importantly, our results demonstrate for the very first time that amphiphilic mycolactone associates with host lipoproteins in serum, and that this association will likely impact our ability to study, diagnose, and treat Buruli ulcers in patients.


Asunto(s)
Toxinas Bacterianas , Macrólidos , Animales , Toxinas Bacterianas/química , Toxinas Bacterianas/aislamiento & purificación , Toxinas Bacterianas/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cromatografía en Capa Delgada , Humanos , Lipoproteínas HDL/química , Lipoproteínas LDL/química , Macrólidos/química , Macrólidos/aislamiento & purificación , Macrólidos/toxicidad , Ratones , Mycobacterium ulcerans , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Ultravioleta
6.
ACS Appl Mater Interfaces ; 2(3): 738-47, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20356275

RESUMEN

We report the synthesis of a series of water-soluble, fluorescent, conjugated polymers via the Gilch reaction with an overall yield greater than 40%. The yield for the Gilch reaction decreases with the increase in the length of the side chain (ethylene glycol repeat units), presumably due to the steric effects inhibiting the linking of monomeric units. The hydrophilic side chain enhances the solubility of the polymer in water and concomitantly leads to a side-chain-dependent conformation and solvent-dependent quantum efficiency. An increase in the ethylene glycol repeat units on the polymer side chain structure results in changes in chain packing; hence, the crystallinity evolves from semicrystalline to liquid crystalline to completely amorphous. An increase in the length of the side chain leads to changes in the polymer-solvent interaction as manifested in the photophysical properties of these polymers. These novel polymers exhibit two glass transition temperatures, which can be readily rationalized by differences in microstructure when casted from hydrophobic and hydrophilic solvents. Cyclic voltammograms of polymer 1d-3d suggest two-electron transfer, as compared to P1 which has one complete redox pair. The potential of having a nanoscaled domain structure and stabilizing two electrons on a polymer chain signifies the potential of these polymers in fabricating electronic and photovoltaic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA