Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
EMBO J ; 36(9): 1261-1278, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28320736

RESUMEN

The rapidly proliferating cells in plant meristems must be protected from genome damage. Here, we show that the regulatory role of the Arabidopsis RETINOBLASTOMA RELATED (RBR) in cell proliferation can be separated from a novel function in safeguarding genome integrity. Upon DNA damage, RBR and its binding partner E2FA are recruited to heterochromatic γH2AX-labelled DNA damage foci in an ATM- and ATR-dependent manner. These γH2AX-labelled DNA lesions are more dispersedly occupied by the conserved repair protein, AtBRCA1, which can also co-localise with RBR foci. RBR and AtBRCA1 physically interact in vitro and in planta Genetic interaction between the RBR-silenced amiRBR and Atbrca1 mutants suggests that RBR and AtBRCA1 may function together in maintaining genome integrity. Together with E2FA, RBR is directly involved in the transcriptional DNA damage response as well as in the cell death pathway that is independent of SOG1, the plant functional analogue of p53. Thus, plant homologs and analogues of major mammalian tumour suppressor proteins form a regulatory network that coordinates cell proliferation with cell and genome integrity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Puntos de Control del Ciclo Celular , Daño del ADN , Reparación del ADN , Factores de Transcripción E2F/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN de Plantas/metabolismo
2.
Plant Cell ; 28(12): 2937-2951, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27920338

RESUMEN

Organ formation in animals and plants relies on precise control of cell state transitions to turn stem cell daughters into fully differentiated cells. In plants, cells cannot rearrange due to shared cell walls. Thus, differentiation progression and the accompanying cell expansion must be tightly coordinated across tissues. PLETHORA (PLT) transcription factor gradients are unique in their ability to guide the progression of cell differentiation at different positions in the growing Arabidopsis thaliana root, which contrasts with well-described transcription factor gradients in animals specifying distinct cell fates within an essentially static context. To understand the output of the PLT gradient, we studied the gene set transcriptionally controlled by PLTs. Our work reveals how the PLT gradient can regulate cell state by region-specific induction of cell proliferation genes and repression of differentiation. Moreover, PLT targets include major patterning genes and autoregulatory feedback components, enforcing their role as master regulators of organ development.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , Diferenciación Celular/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes/genética , Raíces de Plantas/citología , Raíces de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(3): 1107-12, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23277580

RESUMEN

Lateral organ distribution at the shoot apical meristem defines specific and robust phyllotaxis patterns that have intrigued biologists and mathematicians for centuries. In silico studies have revealed that this self-organizing process can be recapitulated by modeling the polar transport of the phytohormone auxin. Phyllotactic patterns change between species and developmental stages, but the processes behind these variations have remained unknown. Here we use regional complementation experiments to reveal that phyllotactic switches in Arabidopsis shoots can be mediated by PLETHORA-dependent control of local auxin biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Mutación , Reguladores del Crecimiento de las Plantas/biosíntesis , Plantas Modificadas Genéticamente , Transducción de Señal , Factores de Transcripción/genética
4.
Plant J ; 75(1): 90-103, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23578319

RESUMEN

In dense stands of plants, such as agricultural monocultures, plants are exposed simultaneously to competition for light and other stresses such as pathogen infection. Here, we show that both salicylic acid (SA)-dependent and jasmonic acid (JA)-dependent disease resistance is inhibited by a simultaneously reduced red:far-red light ratio (R:FR), the early warning signal for plant competition. Conversely, SA- and JA-dependent induced defences did not affect shade-avoidance responses to low R:FR. Reduced pathogen resistance by low R:FR was accompanied by a strong reduction in the regulation of JA- and SA-responsive genes. The severe inhibition of SA-responsive transcription in low R:FR appeared to be brought about by the repression of SA-inducible kinases. Phosphorylation of the SA-responsive transcription co-activator NPR1, which is required for full induction of SA-responsive transcription, was indeed reduced and may thus play a role in the suppression of SA-mediated defences by low R:FR-mediated phytochrome inactivation. Our results indicate that foraging for light through the shade-avoidance response is prioritised over plant immune responses when plants are simultaneously challenged with competition and pathogen attack.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/inmunología , Ciclopentanos/farmacología , Oxilipinas/farmacología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Ácido Salicílico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Botrytis/patogenicidad , Oscuridad , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Luz , Fototransducción , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Fitocromo , Pseudomonas syringae/fisiología
5.
BMC Plant Biol ; 14: 330, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25492368

RESUMEN

BACKGROUND: Elucidation of genotype-to-phenotype relationships is a major challenge in biology. In plants, it is the basis for molecular breeding. Quantitative Trait Locus (QTL) mapping enables to link variation at the trait level to variation at the genomic level. However, QTL regions typically contain tens to hundreds of genes. In order to prioritize such candidate genes, we show that we can identify potentially causal genes for a trait based on overrepresentation of biological processes (gene functions) for the candidate genes in the QTL regions of that trait. RESULTS: The prioritization method was applied to rice QTL data, using gene functions predicted on the basis of sequence- and expression-information. The average reduction of the number of genes was over ten-fold. Comparison with various types of experimental datasets (including QTL fine-mapping and Genome Wide Association Study results) indicated both statistical significance and biological relevance of the obtained connections between genes and traits. A detailed analysis of flowering time QTLs illustrates that genes with completely unknown function are likely to play a role in this important trait. CONCLUSIONS: Our approach can guide further experimentation and validation of causal genes for quantitative traits. This way it capitalizes on QTL data to uncover how individual genes influence trait variation.


Asunto(s)
Genoma de Planta , Estudio de Asociación del Genoma Completo , Anotación de Secuencia Molecular , Oryza/crecimiento & desarrollo , Oryza/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Cruzamientos Genéticos , Marcadores Genéticos , Oryza/anatomía & histología , Fenotipo
6.
Plant Cell ; 22(3): 640-54, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20197506

RESUMEN

The root cap has a central role in root growth, determining the growth trajectory and facilitating penetration into the soil. Root cap cells have specialized functions and morphologies, and border cells are released into the rhizosphere by specific cell wall modifications. Here, we demonstrate that the cellular maturation of root cap is redundantly regulated by three genes, SOMBRERO (SMB), BEARSKIN1 (BRN1), and BRN2, which are members of the Class IIB NAC transcription factor family, together with the VASCULAR NAC DOMAIN (VND) and NAC SECONDARY WALL THICKENING PROMOTING FACTOR (NST) genes that regulate secondary cell wall synthesis in specialized cell types. Lateral cap cells in smb-3 mutants continue to divide and fail to detach from the root, phenotypes that are independent of FEZ upregulation in smb-3. In brn1-1 brn2-1 double mutants, columella cells fail to detach, while in triple mutants, cells fail to mature in all parts of the cap. This complex genetic redundancy involves differences in expression, protein activity, and target specificity. All three genes have very similar overexpression phenotypes to the VND/NST genes, indicating that members of this family are largely functionally equivalent. Our results suggest that Class IIB NAC proteins regulate cell maturation in cells that undergo terminal differentiation with strong cell wall modifications.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cápsula de Raíz de Planta/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Filogenia , Cápsula de Raíz de Planta/genética , Cápsula de Raíz de Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Alineación de Secuencia , Factores de Transcripción/genética
7.
J Exp Bot ; 63(9): 3379-90, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22058405

RESUMEN

How plants relate their requirements for energy with the reducing power necessary to fuel growth is not understood. The activated glucose forms and NADPH are key precursors in pathways yielding, respectively, energy and reducing power for anabolic metabolism. Moreover, they are substrates or allosteric regulators of trehalose-phosphate synthase (TPS1) in fungi and probably also in plants. TPS1 synthesizes the signalling metabolite trehalose-6-phosphate (T6P) and, therefore, has the potential to relate reducing power with energy metabolism to fuel growth. A working model is discussed where trehalose-6-phosphate (T6P) inhibition of SnRK1 is part of a growth-regulating loop in young and metabolically active heterotrophic plant tissues. SnRK1 is the Snf1 Related Kinase 1 and the plant homologue of the AMP-dependent protein kinase of animals, a central energy gauge. T6P accumulation in response to high sucrose levels in a cell inhibits SnRK1 activity, thus promoting anabolic processes and growth. When T6P levels drop due to low glucose-6-phosphate, uridine-diphosphoglucose, and altered NADPH or due to restricted TPS1 activity, active SnRK1 promotes catabolic processes required to respond to energy and carbon deprivation. The model explains why too little or too much T6P has been found to be growth inhibitory: Arabidopsis thaliana embryos and seedlings without TPS1 are growth arrested and Arabidopsis seedlings accumulating T6P on a trehalose medium are growth arrested. Finally, the insight gained with respect to the possible role of T6P metabolism, where it is known to alter developmental and environmental responses of plants, is discussed.


Asunto(s)
Desarrollo de la Planta , Plantas/metabolismo , Fosfatos de Azúcar/metabolismo , Trehalosa/análogos & derivados , Animales , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ambiente , Glucosa/metabolismo , Modelos Biológicos , Trehalosa/metabolismo
8.
Plant Mol Biol ; 76(1-2): 69-83, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21431781

RESUMEN

Leucine-rich repeat receptor-like protein kinases (LRR RLKs) represent the largest group of Arabidopsis RLKs with approximately 235 members. A minority of these LRR RLKs have been assigned to diverse roles in development, pathogen resistance and hormone perception. Using a reverse genetics approach, a collection of homozygous T-DNA insertion lines for 69 root expressed LRR RLK genes was screened for root developmental defects and altered response after exposure to environmental, hormonal/chemical and abiotic stress. The obtained data demonstrate that LRR RLKs play a role in a wide variety of signal transduction pathways related to hormone and abiotic stress responses. The described collection of T-DNA insertion mutants provides a valuable tool for future research into the function of LRR RLK genes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Raíces de Plantas/enzimología , Proteínas Quinasas/metabolismo , Proteínas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Análisis por Conglomerados , ADN Bacteriano/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Ácidos Indolacéticos/farmacología , Proteínas Repetidas Ricas en Leucina , Luz , Manitol/farmacología , Mutagénesis Insercional , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/genética , Proteínas Quinasas/clasificación , Proteínas Quinasas/genética , Proteínas/clasificación , Proteínas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Cloruro de Sodio/farmacología
9.
Eur J Immunol ; 40(10): 2699-709, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21038467

RESUMEN

Distinguishing self from nonself and pathogenic from nonpathogenic is a fundamental challenge to the immune system but whether adaptive immune systems use pathogen-specific signatures to achieve this is largely unknown. By investigating the presentation of large sets of viruses and bacteria on MHC class I molecules, we analyze whether MHC-I molecules have a preference for pathogen-derived peptides. The fraction of potential MHC-I binders in different organisms can vary up to eight-fold. We find that this variation can be largely explained by G+C content differences of the organisms, which are reflected in amino acid frequencies. A significant majority of HLA-A, but not HLA-B, molecules has a preference for peptides derived from organisms with a low G+C content. Interestingly, a low G+C content seems to be a universal signature for pathogenicity. Finally, we find the same preferences in chimpanzee and rhesus macaque MHC-I molecules. These results demonstrate that despite the fast evolution of MHC-I alleles and their extreme polymorphism and diversity in peptide-binding preferences, MHC-I molecules can acquire a preference to exploit pathogen-specific signatures.


Asunto(s)
Inmunidad Adaptativa/inmunología , Presentación de Antígeno/genética , Bacterias/inmunología , Composición de Base/inmunología , Antígenos HLA-A/inmunología , Antígenos HLA-B/inmunología , Virus/inmunología , Inmunidad Adaptativa/genética , Secuencia de Aminoácidos/genética , Animales , Presentación de Antígeno/inmunología , Bacterias/genética , Composición de Base/genética , Epítopos/inmunología , Genoma Bacteriano/inmunología , Genoma Viral/inmunología , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Humanos , Macaca mulatta , Pan troglodytes , Filogenia , Virus/genética
10.
Protein Expr Purif ; 79(1): 128-36, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21605677

RESUMEN

Methionine adenosyltransferase from Euglena gracilis (MATX) is a recently discovered member of the MAT family of proteins that synthesize S-adenosylmethionine. Heterologous overexpression of MATX in Escherichia coli rendered the protein mostly in inclusion bodies under all conditions tested. Therefore, a refolding and purification procedure from these aggregates was developed to characterize the enzyme. Maximal recovery was obtained using inclusion bodies devoid of extraneous proteins by washing under mild urea (2M) and detergent (5%) concentrations. Refolding was achieved in two steps following solubilization in the presence of Mg(2+); chaotrope dilution to <1M and dialysis under reducing conditions. Purified MATX is a homodimer that exhibits Michaelis kinetics with a V(max) of 1.46 µmol/min/mg and K(m) values of approximately 85 and 260 µM for methionine and ATP, respectively. The activity is dependent on Mg(2+) and K(+) ions, but is not stimulated by dimethylsulfoxide. MATX exhibits tripolyphosphatase activity that is stimulated in the presence of S-adenosylmethionine. Far-UV circular dichroism revealed ß-sheet and random coil as the main secondary structure elements of the protein. The high level of sequence conservation allowed construction of a structural model that preserved the main features of the MAT family, the major changes involving the N-terminal domain.


Asunto(s)
Euglena gracilis/enzimología , Metionina Adenosiltransferasa/química , Metionina Adenosiltransferasa/genética , Replegamiento Proteico , Clonación Molecular , Escherichia coli/genética , Euglena gracilis/química , Euglena gracilis/genética , Expresión Génica , Cuerpos de Inclusión , Metionina Adenosiltransferasa/aislamiento & purificación , Metionina Adenosiltransferasa/metabolismo , Modelos Moleculares , Multimerización de Proteína , Estructura Secundaria de Proteína , Solubilidad
11.
Mol Phylogenet Evol ; 53(2): 565-70, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19577655

RESUMEN

Most eukaryotes possess the highly-conserved enzyme methionine adenosyltransferase (MAT) that produces S-adenosyl-l-methionine, a molecule essential to a variety of cellular processes. However, a recent study revealed that genomes of a very few eukaryote lineages encode a highly divergent type of MAT (called MATX), instead of the canonical MAT enzyme. Since MATX-containing eukaryotes are phylogenetically interspersed with MAT-containing organisms, it is likely that the MATX gene was spread into the MAT-containing groups via multiple eukaryote-to-eukaryote lateral gene transfer events. Here, we further investigate the evolutionary history of these gene families by vastly increasing the sampling of species containing MAT (22 new taxa) and MATX (8 new taxa). Our expanded analyses reveal the first example of lateral transfer of a MAT gene between the pelagophycean alga Aureococcusanophagefferens and a cryptomonad. The increased MATX sampling also provided new insights into the evolution of MATX. Specifically, our MATX phylogeny robustly grouped the haptophyte homologues with the Aureococcus homologue to the exclusion of the diatom homologues, suggesting a transfer of the MATX gene between haptophytes and pelagophytes. Various scenarios of MAT and MATX gene family evolution in diatoms are re-evaluated in light of the new data.


Asunto(s)
Diatomeas/genética , Evolución Molecular , Metionina Adenosiltransferasa/genética , Filogenia , ADN de Algas/genética , Diatomeas/clasificación , Transferencia de Gen Horizontal , Modelos Genéticos , Familia de Multigenes , Alineación de Secuencia , Análisis de Secuencia de ADN
12.
J Eukaryot Microbiol ; 55(5): 374-81, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19017057

RESUMEN

S-adenosylmethionine is one of the most important metabolites in living cells and is synthesized in a single reaction catalyzed by methionine adenosyltransferase (MAT). At the sequence and structural level, this enzyme is one of the most conserved proteins known. Here we show that some representatives of three distantly related eukaryotic lineages--dinoflagellates, haptophytes, and euglenids--possess a highly divergent type of MAT, which we call MATX. Even though MATX contains all the sites known to be involved in catalysis and the association of monomers, it also has four insertions throughout the protein that are not observed in other MAT homologs. The phylogenetic distribution and affinities of MATX suggest that it originated in a single eukaryotic lineage and was spread via multiple events of eukaryote-to-eukaryote lateral gene transfer. We suggest a tentative model in which the origin of MATX is connected with the progression of secondary endosymbiosis.


Asunto(s)
Dinoflagelados/enzimología , Euglénidos/enzimología , Eucariontes/enzimología , Metionina Adenosiltransferasa/genética , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Dinoflagelados/genética , Euglénidos/genética , Eucariontes/genética , Evolución Molecular , Modelos Biológicos , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
13.
PLoS One ; 12(8): e0182097, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28797052

RESUMEN

Understanding of phenotypes and their genetic basis is a major focus in current plant biology. Large amounts of phenotype data are being generated, both for macroscopic phenotypes such as size or yield, and for molecular phenotypes such as expression levels and metabolite levels. More insight in the underlying genetic and molecular mechanisms that influence phenotypes will enable a better understanding of how various phenotypes are related to each other. This will be a major step forward in understanding plant biology, with immediate value for plant breeding and academic plant research. Currently the genetic basis of most phenotypes remains however to be discovered, and the relatedness of different traits is unclear. We here present a novel approach to connect phenotypes to underlying biological processes and molecular functions. These connections define similarities between different types of phenotypes. The approach starts by using Quantitative Trait Locus (QTL) data, which are abundantly available for many phenotypes of interest. Overrepresentation analysis of gene functions based on Gene Ontology term enrichment across multiple QTL regions for a given phenotype, be it macroscopic or molecular, results in a small set of biological processes and molecular functions for each phenotype. Subsequently, similarity between different phenotypes can be defined in terms of these gene functions. Using publicly available rice data as example, a close relationship with defined molecular phenotypes is demonstrated for many macroscopic phenotypes. This includes for example a link between 'leaf senescence' and 'aspartic acid', as well as between 'days to maturity' and 'choline'. Relationships between macroscopic and molecular phenotypes may result in more efficient marker-assisted breeding and are likely to direct future research aimed at a better understanding of plant phenotypes.


Asunto(s)
Genes de Plantas , Oryza/genética , Fenotipo , Sitios de Carácter Cuantitativo , Mapeo Cromosómico/métodos , Oryza/crecimiento & desarrollo
14.
J Mol Biol ; 335(3): 693-706, 2004 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-14687567

RESUMEN

Structural and phylogenetic relationships among Bacteria and Eukaryota were analyzed by examining 292 methionine adenosyltransferase (MAT) amino acid sequences with respect to the crystal structure of this enzyme established for Escherichia coli and rat liver. Approximately 30% of MAT residues were found to be identical in all species. Five highly conserved amino acid sequence blocks did not vary in the MAT family. We detected specific structural features that correlated with sequence signatures for several clades, allowing taxonomical identification by sequence analysis. In addition, the number of amino acid residues in the loop connecting beta-strands A2 and A3 served to clearly distinguish sequences between eukaryotes and eubacteria. The molecular phylogeny of MAT genes in eukaryotes can be explained in terms of functional diversification coupled to gene duplication or alternative splicing and adaptation through strong structural constraints. Sequence analyses and intron/exon junction positions among nematodes, arthropods and vertebrates support the traditional Coelomata hypothesis. In vertebrates, the liver MAT I isoenzyme has gradually adapted its sequence towards one providing a more specific liver function. MAT phylogeny also served to cluster the major bacterial groups, demonstrating the superior phylogenetic performance of this ubiquitous, housekeeping gene in reconstructing the evolutionary history of distant relatives.


Asunto(s)
Bases de Datos de Proteínas , Metionina Adenosiltransferasa/química , Metionina Adenosiltransferasa/genética , Filogenia , Homología Estructural de Proteína , Animales , Bacterias , Secuencia Conservada , Células Eucariotas , Evolución Molecular , Marcadores Genéticos , Humanos , Conformación Proteica , Ratas , Homología de Secuencia de Aminoácido
15.
PLoS One ; 10(2): e0116973, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25719734

RESUMEN

Various environmental signals integrate into a network of floral regulatory genes leading to the final decision on when to flower. Although a wealth of qualitative knowledge is available on how flowering time genes regulate each other, only a few studies incorporated this knowledge into predictive models. Such models are invaluable as they enable to investigate how various types of inputs are combined to give a quantitative readout. To investigate the effect of gene expression disturbances on flowering time, we developed a dynamic model for the regulation of flowering time in Arabidopsis thaliana. Model parameters were estimated based on expression time-courses for relevant genes, and a consistent set of flowering times for plants of various genetic backgrounds. Validation was performed by predicting changes in expression level in mutant backgrounds and comparing these predictions with independent expression data, and by comparison of predicted and experimental flowering times for several double mutants. Remarkably, the model predicts that a disturbance in a particular gene has not necessarily the largest impact on directly connected genes. For example, the model predicts that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1) mutation has a larger impact on APETALA1 (AP1), which is not directly regulated by SOC1, compared to its effect on LEAFY (LFY) which is under direct control of SOC1. This was confirmed by expression data. Another model prediction involves the importance of cooperativity in the regulation of APETALA1 (AP1) by LFY, a prediction supported by experimental evidence. Concluding, our model for flowering time gene regulation enables to address how different quantitative inputs are combined into one quantitative output, flowering time.


Asunto(s)
Arabidopsis/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/crecimiento & desarrollo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Modelos Genéticos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Genome Biol ; 13(10): R94, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23034476

RESUMEN

BACKGROUND: Following gene duplication, retained paralogs undergo functional divergence, which is reflected in changes in DNA sequence and expression patterns. The extent of divergence is influenced by several factors, including protein function. We examine whether an epigenetic modification, trimethylation of histone H3 at lysine 27 (H3K27me3), could be a factor in the evolution of expression patterns after gene duplication. Whereas in animals this repressive mark for transcription is deposited on long regions of DNA, in plants its localization is gene-specific. Because of this and a well-annotated recent whole-genome duplication, Arabidopsis thaliana is uniquely suited for studying the potential association of H3K27me3 with the evolutionary fate of genes. RESULTS: Paralogous pairs with H3K27me3 show the highest coding sequence divergence, which can be explained by their low expression levels. Interestingly, they also show the highest similarity in expression patterns and upstream regulatory regions, while paralogous pairs where only one gene is an H3K27me3 target show the highest divergence in expression patterns and upstream regulatory sequence. These trends in divergence of expression and upstream regions are especially pronounced for transcription factors. CONCLUSIONS: After duplication, a histone modification can be associated with a particular fate of paralogs: H3K27me3 is linked to lower expression divergence yet higher coding sequence divergence. Our results show that H3K27me3 constrains expression divergence after duplication. Moreover, its association with higher conservation of upstream regions provides a potential mechanism for the conserved H3K27me3 targeting of the paralogs.


Asunto(s)
Arabidopsis/genética , Epigenómica/métodos , Evolución Molecular , Histonas/metabolismo , Proteínas de Plantas/metabolismo , Metilación de ADN , Epigénesis Genética , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Genoma de Planta
17.
PLoS One ; 6(4): e19028, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21532992

RESUMEN

Receptor-like kinases (RLKs) constitute a large family of signal perception molecules in Arabidopsis. The largest group of RLKs is the leucine-rich repeat (LRR) class that has been described to function in development and defense. Of these, CLAVATA1 (CLV1) and ERECTA (ER) receptors function in maintaining shoot meristem homeostasis and organ growth, but LRR RLKs with similar function in the root remain unknown. For the interaction of Arabidopsis with the oomycete pathogen Hyaloperonospora arabidopsidis the involvement of LRR RLKs has not been demonstrated. A set of homozygous T-DNA insertion lines mutated in LRR RLKs was investigated to assess the potential role of these receptors in root meristem maintenance and compatibility. One mutant line, rlk902, was discovered that showed both reduced root growth and resistance to downy mildew in a recessive manner. The phenotypes of this mutated line could not be rescued by complementation, but are nevertheless linked to the T-DNA insertion. Microarray studies showed that gene expression spanning a region of approximately 84 kb upstream of the mutated gene was downregulated. The results suggest T-DNA mediated trans-repression of multiple genes upstream of the RLK902 locus links both phenotypes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Oomicetos/patogenicidad , Raíces de Plantas/crecimiento & desarrollo , Proteínas Quinasas/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Genes de Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos
18.
Curr Biol ; 21(13): 1123-8, 2011 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-21700457

RESUMEN

The pattern of plant organ initiation at the shoot apical meristem (SAM), termed phyllotaxis, displays regularities that have long intrigued botanists and mathematicians alike. In the SAM, the central zone (CZ) contains a population of stem cells that replenish the surrounding peripheral zone (PZ), where organs are generated in regular patterns. These patterns differ between species and may change in response to developmental or environmental cues [1]. Expression analysis of auxin efflux facilitators of the PIN-FORMED (PIN) family combined with modeling of auxin transport has indicated that organ initiation is associated with intracellular polarization of PIN proteins and auxin accumulation [2-10]. However, regulators that modulate PIN activity to determine phyllotactic patterns have hitherto been unknown. Here we reveal that three redundantly acting PLETHORA (PLT)-like AP2 domain transcription factors control shoot organ positioning in the model plant Arabidopsis thaliana. Loss of PLT3, PLT5, and PLT7 function leads to nonrandom, metastable changes in phyllotaxis. Phyllotactic changes in plt3plt5plt7 mutants are largely attributable to misregulation of PIN1 and can be recapitulated by reducing PIN1 dosage, revealing that PLT proteins are key regulators of PIN1 activity in control of phyllotaxis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/fisiología , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
J Biol Chem ; 278(9): 7285-93, 2003 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-12496263

RESUMEN

Recombinant rat liver methionine adenosyltransferase has been refolded into fully active tetramers (MAT I) and dimers (MAT III), using as a source chaotrope-solubilized aggregates resulting from specific washes of inclusion bodies. The conditions of refolding, dialysis in the presence of 10 mm dithiothreitol or 10 mm GSH with 1 mm GSSG, allowed the production of both isoforms, the nature of the redox agent determining the capacity of the final product (MAT I/III) to interconvert. Refolding in the presence of 10 mm dithiothreitol yielded mainly MAT III in a concentration-dependent equilibrium with the homotetramer MAT I. However, refolding in the presence of the redox pair GSH/GSSG resulted in a stable MAT I and III mixture. Blockage of dimer-tetramer interconversion has been found related to the production of a single intramolecular disulfide in methionine adenosyltransferase during the GSH/GSSG folding process. The residues involved in this disulfide have been identified by mass spectrometry and using a set of single cysteine mutants as cysteines 35 and 61. In addition, a kinetic intermediate in the MAT I dissociation to MAT III has been detected. The physiological importance of these results is discussed in light of the structural and regulatory data available.


Asunto(s)
Citosol/metabolismo , Metionina Adenosiltransferasa/química , Animales , Cromatografía , Cromatografía en Gel , Cristalografía por Rayos X , Cisteína/química , Dimerización , Disulfuros/metabolismo , Ditiotreitol/farmacología , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Cinética , Hígado/enzimología , Hígado/metabolismo , Espectrometría de Masas , Metionina Adenosiltransferasa/metabolismo , Mutación , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Ratas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Termodinámica , Factores de Tiempo , Tripsina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA