Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proteomics ; 24(12-13): e2300281, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38171879

RESUMEN

Glycosylation, the major post-translational modification of proteins, significantly increases the diversity of proteoforms. Glycans are involved in a variety of pivotal structural and functional roles of proteins, and changes in glycosylation are profoundly connected to the progression of numerous diseases. Mass spectrometry (MS) has emerged as the gold standard for glycan and glycopeptide analysis because of its high sensitivity and the wealth of fragmentation information that can be obtained. Various separation techniques have been employed to resolve glycan and glycopeptide isomers at the front end of the MS. However, differentiating structures of isobaric and isomeric glycopeptides constitutes a challenge in MS-based characterization. Many reports described the use of various ion mobility-mass spectrometry (IM-MS) techniques for glycomic analyses. Nevertheless, very few studies have focused on N- and O-linked site-specific glycopeptidomic analysis. Unlike glycomics, glycoproteomics presents a multitude of inherent challenges in microheterogeneity, which are further exacerbated by the lack of dedicated bioinformatics tools. In this review, we cover recent advances made towards the growing field of site-specific glycosylation analysis using IM-MS with a specific emphasis on the MS techniques and capabilities in resolving isomeric peptidoglycan structures. Furthermore, we discuss commonly used software that supports IM-MS data analysis of glycopeptides.


Asunto(s)
Glicopéptidos , Glicosilación , Glicopéptidos/análisis , Glicopéptidos/química , Glicopéptidos/metabolismo , Humanos , Espectrometría de Movilidad Iónica/métodos , Polisacáridos/análisis , Polisacáridos/química , Polisacáridos/metabolismo , Espectrometría de Masas/métodos , Proteómica/métodos , Procesamiento Proteico-Postraduccional , Animales , Glicómica/métodos , Glicoproteínas/química , Glicoproteínas/análisis , Glicoproteínas/metabolismo
2.
Nat Methods ; 18(11): 1304-1316, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34725484

RESUMEN

Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.


Asunto(s)
Glicopéptidos/sangre , Glicoproteínas/sangre , Informática/métodos , Proteoma/análisis , Proteómica/métodos , Investigadores/estadística & datos numéricos , Programas Informáticos , Glicosilación , Humanos , Proteoma/metabolismo , Espectrometría de Masas en Tándem
3.
J Proteome Res ; 22(4): 1138-1147, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36763792

RESUMEN

Targeted quantification of proteins is a standard methodology with broad utility, but targeted quantification of glycoproteins has not reached its full potential. The lack of optimized workflows and isotopically labeled standards limits the acceptance of glycoproteomics quantification. In this work, we introduce an efficient and streamlined chemoenzymatic synthesis of a library of isotopically labeled glycopeptides of IgG1 which we use for quantification in an energy optimized LC-MS/MS-PRM workflow. Incorporation of the stable isotope labeled N-acetylglucosamine enables an efficient monitoring of all major fragment ions of the glycopeptides generated under the soft higher-energy C-trap dissociation (HCD) conditions, which reduces the coefficients of variability (CVs) of the quantification to 0.7-2.8%. Our results document, for the first time, that the workflow using a combination of stable isotope labeled standards with intrascan normalization enables quantification of the glycopeptides by an electron transfer dissociation (ETD) workflow, as well as the HCD workflow, with the highest sensitivity compared to traditional workflows. This was exemplified by a rapid quantification (13 min) of IgG1 Fc glycoforms from COVID-19 patients.


Asunto(s)
COVID-19 , Inmunoglobulina G , Humanos , Espectrometría de Masas en Tándem/métodos , Glicopéptidos , Cromatografía Liquida/métodos
4.
Glycobiology ; 33(5): 384-395, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37052463

RESUMEN

Sulf-2 is an extracellular heparan 6-O-endosulfatase involved in the postsynthetic editing of heparan sulfate (HS), which regulates many important biological processes. The activity of the Sulf-2 and its substrate specificity remain insufficiently characterized in spite of more than two decades of studies of this enzyme. This is due, in part, to the difficulties in the production and isolation of this highly modified protein and due to the lack of well-characterized synthetic substrates for the probing of its catalytic activity. We introduce synthetic HS oligosaccharides to fill this gap, and we use our recombinant Sulf-2 protein to show that a paranitrophenol (pNP)-labeled synthetic oligosaccharide allows a reliable quantification of its enzymatic activity. The substrate and products of the desulfation reaction are separated by ion exchange high-pressure liquid chromatography and quantified by UV absorbance. This simple assay allows the detection of the Sulf-2 activity at high sensitivity (nanograms of the enzyme) and specificity. The method also allowed us to measure the heparan 6-O-endosulfatase activity in biological samples as complex as the secretome of cancer cell lines. Our in vitro measurements show that the N-glycosylation of the Sulf-2 enzyme affects the activity of the enzyme and that phosphate ions substantially decrease the Sulf-2 enzymatic activity. This assay offers an efficient, sensitive, and specific measurement of the heparan 6-O-endosulfatase activity that could open avenues to in vivo activity measurements and improve our understanding of the enzymatic editing of the sulfation of heparan.


Asunto(s)
Heparitina Sulfato , Oligosacáridos , Heparitina Sulfato/química , Línea Celular , Proteínas Recombinantes/metabolismo , Glicosaminoglicanos , Sulfotransferasas/metabolismo
5.
Anal Chem ; 95(27): 10145-10148, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37382290

RESUMEN

Mass spectrometry (MS) can unlock crucial insights into the intricate world of glycosylation analysis. Despite its immense potential, the qualitative and quantitative analysis of isobaric glycopeptide structures remains one of the most daunting hurdles in the field of glycoproteomics. The ability to distinguish between these complex glycan structures poses a significant challenge, hindering our ability to accurately measure and understand the role of glycoproteins in biological systems. A few recent publications described the use of collision energy (CE) modulation to improve structural elucidation, especially for qualitative purposes. Different linkages of glycan units usually demonstrate different stabilities under CID/HCD fragmentation conditions. Fragmentation of the glycan moiety produces low molecular weight ions (oxonium ions) that can serve as a structure-specific signature for specific glycan moieties; however, the specificity of these fragments has never been examined closely. Here, we particularly focused on N-glycoproteomics analysis and investigated fragmentation specificity using synthetic stable isotope-labeled N-glycopeptide standards. These standards were isotopically labeled at the reducing terminal GlcNAc, which allowed us to resolve fragments produced by the oligomannose core moiety and fragments generated from outer antennary structures. Our research identified the potential for false-positive structure assignments due to the occurrence of "Ghost" fragments resulting from single glyco unit rearrangement or mannose core fragmentation within the collision cell. To mitigate this issue, we have established a minimal intensity threshold for these fragments to prevent misidentification of structure-specific fragments in glycoproteomics analysis. Our findings provide a crucial step forward in the quest for more accurate and reliable glycoproteomics measurements.


Asunto(s)
Glicoproteínas , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Glicoproteínas/química , Polisacáridos/química , Glicopéptidos/análisis , Iones/química
6.
Proteomics ; 22(15-16): e2100322, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35700310

RESUMEN

Glycosylation of viral proteins is required for the progeny formation and infectivity of virtually all viruses. It is increasingly clear that distinct glycans also play pivotal roles in the virus's ability to shield and evade the host's immune system. Recently, there has been a great advancement in structural identification and quantitation of viral glycosylation, especially spike proteins. Given the ongoing pandemic and the high demand for structure analysis of SARS-CoV-2 densely glycosylated spike protein, mass spectrometry methodologies have been employed to accurately determine glycosylation patterns. There are still many challenges in the determination of site-specific glycosylation of SARS-CoV-2 viral spike protein. This is compounded by some conflicting results regarding glycan site occupancy and glycan structural characterization. These are probably due to differences in the expression systems, form of expressed spike glycoprotein, MS methodologies, and analysis software. In this review, we recap the glycosylation of spike protein and compare among various studies. Also, we describe the most recent advancements in glycosylation analysis in greater detail and we explain some misinterpretation of previously observed data in recent publications. Our study provides a comprehensive view of the spike protein glycosylation and highlights the importance of consistent glycosylation determination.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicosilación , Humanos , Espectrometría de Masas/métodos , Polisacáridos/química , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
7.
Prostate ; 82(1): 132-144, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34662441

RESUMEN

INTRODUCTION: N-glycosylation is a ubiquitous and variable posttranslational modification that regulates physiological functions of secretory and membrane-associated proteins and the dysregulation of glycosylation pathways is often associated with cancer growth and metastasis. Prostate-specific membrane antigen (PSMA) is an established biomarker for prostate cancer imaging and therapy. METHODS: Mass spectrometry was used to analyze the distribution of the site-specific glycoforms of PSMA in insect, human embryonic kidney, and prostate cancer cells, and in prostate tissue upon immunoaffinity enrichment. RESULTS: While recombinant PSMA expressed in insect cells was decorated mainly by paucimannose and high mannose glycans, complex, hybrid, and high mannose glycans were detected in samples from human cells and tissue. We noted an interesting spatial distribution of the glycoforms on the PSMA surface-high mannose glycans were the dominant glycoforms at the N459, N476, and N638 sequons facing the plasma membrane, while the N121, N195, and N336 sites, located at the exposed apical PSMA domain, carried primarily complex glycans. The presence of high mannose glycoforms at the former sequons likely results from the limited access of enzymes of the glycosynthetic pathway required for the synthesis of the complex structures. In line with the limited accessibility of membrane-proximal sites, no glycosylation was observed at the N51 site positioned closest to the membrane. CONCLUSIONS: Our study presents initial descriptive analysis of the glycoforms of PSMA observed in cell lines and in prostate tissue. It will hopefully stimulate further research into PSMA glycoforms in the context of tumor staging, noninvasive detection of prostate tumors, and the impact of glycoforms on physicochemical and enzymatic characteristics of PSMA in a tissue-specific manner.


Asunto(s)
Antígenos de Superficie/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Polisacáridos , Próstata , Neoplasias de la Próstata , Biomarcadores de Tumor/análisis , Línea Celular , Glicosilación , Humanos , Masculino , Espectrometría de Masas/métodos , Estadificación de Neoplasias , Polisacáridos/clasificación , Polisacáridos/metabolismo , Próstata/enzimología , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Procesamiento Proteico-Postraduccional
8.
Molecules ; 27(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35408612

RESUMEN

Development of high throughput robust methods is a prerequisite for a successful clinical use of LC-MS/MS assays. In earlier studies, we reported that nLC-MS/MS measurement of the O-glycoforms of HPX is an indicator of liver fibrosis. In this study, we show that a microflow LC-MS/MS method using a single column setup for capture of the analytes, desalting, fast gradient elution, and on-line mass spectrometry measurements, is robust, substantially faster, and even more sensitive than our nLC setup. We demonstrate applicability of the workflow on the quantification of the O-HPX glycoforms in unfractionated serum samples of control and liver disease patients. The assay requires microliter volumes of serum samples, and the platform is amenable to one hundred sample injections per day, providing a valuable tool for biomarker validation and screening studies.


Asunto(s)
Hepatopatías , Espectrometría de Masas en Tándem , Biomarcadores , Cromatografía Liquida/métodos , Humanos , Cirrosis Hepática/diagnóstico , Espectrometría de Masas en Tándem/métodos
9.
J Proteome Res ; 20(1): 485-497, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33073996

RESUMEN

Immune checkpoint inhibitors, including PD-L1/PD-1, are key regulators of the immune response and promising targets in cancer immunotherapy. N-glycosylation of PD-L1 affects its interaction with PD-1, but little is known about the distribution of glycoforms at its four NXS/T sequons. We optimized LC-MS/MS methods using collision energy modulation for the site-specific resolution of specific glycan motifs. We demonstrate that PD-L1 on the surface of breast cancer cell line carries mostly complex glycans with a high proportion of polyLacNAc structures at the N219 sequon. Contrary to the full-length protein, the secreted form of PD-L1 expressed in breast MDA-MB-231 or HEK293 cells demonstrated minimum N219 occupancy and low contribution of the polyLacNAc structures. Molecular modeling of PD-L1/PD-1 interaction with N-glycans suggests that glycans at the N219 site of PD-L1 and N74 and N116 of PD-1 may be involved in glycan-glycan interactions, but the impact of this potential interaction on the protein function remains at this point unknown. The interaction of PD-L1 with clinical antibodies is also affected by glycosylation. In conclusion, PD-L1 expressed in the MDA-MB-231 breast cancer cell line carries polyLacNAc glycans mostly at the N219 sequon, which displays the highest variability in occupancy and is most likely to influence the interaction with PD-1.


Asunto(s)
Antígeno B7-H1 , Espectrometría de Masas en Tándem , Antígeno B7-H1/genética , Cromatografía Liquida , Glicosilación , Células HEK293 , Humanos
10.
Anal Chem ; 93(4): 2003-2009, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33406838

RESUMEN

Covid-19 pandemic outbreak is the reason of the current world health crisis. The development of effective antiviral compounds and vaccines requires detailed descriptive studies of SARS-CoV-2 proteins. The SARS-CoV-2 spike (S) protein mediates virion binding to the human cells through its interaction with the ACE2 cell surface receptor and is one of the prime immunization targets. A functional virion is composed of three S1 and three S2 subunits created by furin cleavage of the spike protein at R682, a polybasic cleavage site that differs from the SARS-CoV spike protein of 2002. By analysis of the protein produced in HEK293 cells, we observe that the spike is O-glycosylated on a threonine (T678) near the furin cleavage site occupied by core-1 and core-2 structures. In addition, we have identified eight additional O-glycopeptides on the spike glycoprotein and confirmed that the spike protein is heavily N-glycosylated. Our recently developed liquid chromatography-mass spectrometry methodology allowed us to identify LacdiNAc structural motifs on all occupied N-glycopeptides and polyLacNAc structures on six glycopeptides of the spike protein. In conclusion, our study substantially expands the current knowledge of the spike protein's glycosylation and enables the investigation of the influence of O-glycosylation on its proteolytic activation.


Asunto(s)
SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Cromatografía Liquida , Glicosilación , Células HEK293 , Humanos , Espectrometría de Masas , Glicoproteína de la Espiga del Coronavirus/química
11.
J Biol Chem ; 294(45): 16816-16830, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31558607

RESUMEN

Brain-derived neurotrophic factor (BDNF) is generated by proteolytic cleavage of a prodomain from the proBDNF precursor either intracellularly by furin-like proteases or extracellularly by plasmin or matrix metalloproteinases. ProBDNF carries a single N-glycosylation sequon (Asn-127) that remains virtually unstudied despite being located in a highly conserved region proximal to the proteolytic site. To study the proBDNF structure and function, here we expressed the protein and its nonglycosylated N127Q mutant in HEK293F cells. We found that mutation of the Asn-127 prevents intracellular maturation and secretion, an effect reproduced in WT proBDNF by tunicamycin-induced inhibition of N-glycosylation. Absence of the N-glycan did not affect the kinetics of proBDNF cleavage by furin in vitro, indicating that effects other than a direct furin-proBDNF interaction may regulate proBDNF maturation. Using an optimized LC-MS/MS workflow, we demonstrate that secreted proBDNF is fully glycosylated and carries rare N-glycans terminated by GalNAcß1-4GlcNAcß1-R (LacdiNAc) extensively modified by terminal sulfation. We and others noted that this type of glycosylation is protein-specific, extends to proBDNF expressed in PC12 cells, and implies the presence of interacting partners that recognize this glycan epitope. The findings of our study reveal that proBDNF carries an unusual type of N-glycans important for its processing and secretion. Our results open new opportunities for functional studies of these protein glycoforms in different cells and tissues.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/química , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Lactosa/análogos & derivados , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Sulfatos/química , Secuencia de Aminoácidos , Animales , Glicosilación , Células HEK293 , Humanos , Lactosa/química
12.
Anal Chem ; 92(12): 8262-8267, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32441515

RESUMEN

Glycosylation is a major post-translational modification of proteins that regulates many biological processes including protein folding, structure stability, receptor activation, and immune responses. The glycans attached to proteins represent an important determinant of the protein interaction-specificity and maintain the 3D structure of proteins. Mass spectrometry (MS) is one of the most efficient tools used in the current studies of glycoproteins and structure of their glycoforms. Collision energy (CE) is a crucial instrument parameter that can be exploited to improve structural resolution because different linkages of glycan units show different stabilities under CID/HCD fragmentation. Here we report the utility of CE modulation for qualitative and quantitative analysis of site- and structure-specific glycoforms of proteins. Using CE modulation, we were able to break selectively specific glycan linkages on intact glycopeptides and get, to some degree, structure-specific mass spectrometric signals. Structure- and CE-specific oxonium ions provide sufficient information for the resolution of outer arm structure motifs with recognized biological functions. The complementary Y-ions, generated under optimized low CE (soft) conditions, provide additional structural information including features specific to the chitobiose core. This methodology of multiple CE fragmentation without merging spectral information can significantly improve confidence of glycopeptide identification and structural resolution by providing additional information to the established glycopeptide-search algorithms and tools.


Asunto(s)
Glicopéptidos/análisis , Glicoproteínas/análisis , Proteómica , Cromatografía Liquida , Metabolismo Energético , Glicopéptidos/síntesis química , Glicopéptidos/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Humanos , Proteínas Recombinantes/análisis , Proteínas Recombinantes/metabolismo , Espectrometría de Masas en Tándem
14.
Anal Chem ; 91(14): 9206-9212, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31268672

RESUMEN

Quantitative analysis of site specific glycoforms of proteins is technically challenging but highly desirable; resolution of the fucosylated glycoforms is of particular interest due to their biological importance. In this study, we developed a sensitive and specific LC-MS-MRM quantification method that distinguishes the outer arm and core fucosylated configurations of the N-glycopeptides. We take advantage of limited fragmentation of the glycopeptides at low collision energy CID to produce linkage-specific Y-ions. We select these informative ions as MRM transitions for the quantification of the outer arm and total fucosylation of 12 fucosylated glycoforms of 9 glycopeptides in 7 plasma proteins. Our workflow showed improved sensitivity and specificity of quantification of the glycopeptides compared to oxonium ion transitions which allowed us to quantify the glycoforms directly in plasma or serum without fractionation of the samples or glycopeptide enrichment. A pilot study of fucosylation in liver cirrhosis of the HCV and NASH etiologies confirms the quantitative capabilities of the method and shows that liver cirrhosis is consistently associated with increased outer arm fucosylation of majority of the analyzed proteins. The results show that the outer arm fucosylation of the A2G2F1 glycoform of the VDKDLQSLEDILHQVENK peptide of fibrinogen increases greater than 10-fold in the HCV and NASH patients compared to healthy controls.


Asunto(s)
Proteínas Sanguíneas/análisis , Cromatografía Liquida/métodos , Fucosa/química , Glicoproteínas/sangre , Espectrometría de Masas/métodos , Secuencia de Aminoácidos , Proteínas Sanguíneas/química , Glicoproteínas/química , Glicosilación , Humanos , Cirrosis Hepática/sangre , Cirrosis Hepática/diagnóstico , Proyectos Piloto , Reproducibilidad de los Resultados
15.
J Proteome Res ; 17(8): 2755-2766, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29972295

RESUMEN

Sex-hormone-binding globulin (SHBG) is a liver-secreted glycoprotein and a major regulator of steroid distribution. It has been reported that the serum concentration of SHBG changes in liver disease. To explore the involvement of SHBG in liver disease of different etiologies in greater detail, we developed a sensitive and selective liquid chromatography-mass spectrometry parallel reaction monitoring workflow to achieve quantitative analysis of SHBG glycosylation microheterogeneity. The method uses energy-optimized "soft" fragmentation to extract informative Y ions for maximal coverage of glycoforms and their quantitative comparisons. A total of 15 N-glycoforms of two N-glycosites and 3 O-glycoforms of 1 O-glycosite of this low-abundance serum protein were simultaneously analyzed in the complex samples. At the same time, we were able to partially resolve linkage isoforms of the fucosylated glycoforms and to identify and quantify SHBG N-glycoforms that were not previously reported. The results show that both core and outer-arm fucosylation of the N-glycoforms increases with liver cirrhosis but that a further increase of fucosylation is not observed with hepatocellular carcinoma (HCC). In contrast, the α-2-6 sialylated glycoform of the O-glycopeptide of SHBG increases in liver cirrhosis, and a significant 2-fold further increase is observed in HCC. In general, we do not find a significant contribution of different liver disease etiologies to the observed changes in glycosylation; however, elevation of the newly reported HexNAc(4)Hex(6) N-glycoform is associated with alcoholic liver disease.


Asunto(s)
Glicosilación , Hepatopatías/etiología , Hepatopatías/metabolismo , Globulina de Unión a Hormona Sexual/metabolismo , Recolección de Muestras de Sangre , Carcinoma Hepatocelular/metabolismo , Cromatografía Liquida , Fucosa/metabolismo , Humanos , Cirrosis Hepática/metabolismo , Hepatopatías/sangre , Neoplasias Hepáticas/metabolismo , Isoformas de Proteínas/metabolismo , Espectrometría de Masas en Tándem/métodos
16.
Anal Bioanal Chem ; 410(20): 5001-5008, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29806066

RESUMEN

The analysis of intact glycopeptides is a challenge because of the structural variety of the complex conjugates. In this work, we used separation involving hydrophilic interaction liquid chromatography using a superficially porous particle HALO® penta-HILIC column with tandem mass spectrometric detection for the analysis of N-glycopeptides of hemopexin. We tested the effect of the mobile phase composition on retention and separation of the glycopeptides. The results indicated that the retention of the glycopeptides was the combination of partitioning and adsorption processes. Under the optimized conditions, our HILIC method showed the ability to efficiently separate the glycoforms of the same peptide backbone including separation of the isobaric glycoforms. We achieved efficient separation of core and outer arm linked fucose of bi-antennary and tri-antennary glycoforms of the SWPAVGNCSSALR peptide and bi-antennary glycoform of the ALPQPQNVTSLLGCTH peptide, respectively. Moreover, we demonstrated the separation of antennary position of sialic acid linked via α2-6 linkage of the monosialylated glycopeptides. Glycopeptide isomers are often differentially associated with various biological processes. Therefore, chromatographic separation of the species without the need for an extensive sample preparation appears attractive for their identification, characterization, and reliable quantification.


Asunto(s)
Cromatografía Liquida/métodos , Glicopéptidos/análisis , Hemopexina/química , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Glicopéptidos/aislamiento & purificación , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Isomerismo , Proteómica/métodos
17.
Electrophoresis ; 38(17): 2193-2199, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28444931

RESUMEN

Analysis of glycosylation is challenging due to micro- and macro-heterogeneity of the protein attachment. A combination of LC with MS/MS is one of the most powerful tools for glycopeptide analysis. In this work, we show the effect of various monosaccharide units on the retention time of glycopeptides. Retention behavior of several glycoforms of six peptides obtained from tryptic digest of haptoglobin, hemopexin, and sex hormone-binding globulin was studied on a reversed phase chromatographic column. We observed reduction of the retention time with increasing number of monosaccharide units of glycans attached to the same peptide backbone. Fucosylation of larger glycans provides less significant retention time shift than for smaller ones. Retention times of glycopeptides were expressed as relative retention times. These relative retention times were used for calculation of upper and lower limits of glycopeptide retention time windows under the reversed phase conditions. We then demonstrated on the case of a glycopeptide of haptoglobin that the predicted retention time window boosts confidence of identification and minimizes false-positive identification. Relative retention time, as a qualitative parameter, is expected to improve LC-MS/MS characterization of glycopeptides.


Asunto(s)
Cromatografía de Fase Inversa/métodos , Glicopéptidos/sangre , Glicopéptidos/química , Nanotecnología/métodos , Glicopéptidos/metabolismo , Glicosilación , Humanos , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Proteómica , Sensibilidad y Especificidad , Tripsina/metabolismo
18.
Anal Bioanal Chem ; 409(2): 619-627, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27822650

RESUMEN

Cirrhosis of the liver is associated with increased fucosylation of proteins in the plasma. We describe a data-independent (DIA) strategy for comparative analysis of the site-specific glycoforms of plasma glycoproteins. A library of 161 glycoforms of 25 N-glycopeptides was established by data-dependent LC-MS/MS analysis of a tryptic digest of 14 human protein groups retained on a multiple affinity removal column. The collision-induced dissociation conditions were adjusted to maximize the yield of selective Y-ions which were quantified by a data-independent mass spectrometry workflow using a 10-Da acquisition window. Using this workflow, we quantified 125 glycoforms of 25 glycopeptides, covering 10 of the 14 proteins, without any further glycopeptide enrichment. Comparison of the proteins in the plasma of healthy controls and cirrhotic patients shows an average 1.5-fold increase in the fucosylation of bi-antennary glycoforms and 3-fold increase in the fucosylation of tri- and tetra- antennary glycoforms. These results show that the adjusted glycopeptide DIA workflow using soft collision-induced fragmentation of glycopeptides is suitable for site-specific analysis of protein glycosylation in complex mixtures of analytes without glycopeptide enrichment.


Asunto(s)
Cirrosis Hepática/fisiopatología , Proteínas Sanguíneas/química , Glucolípidos/química , Glicosilación , Humanos , Hígado/patología , Hígado/fisiopatología
19.
Anal Chem ; 88(20): 10118-10125, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27649061

RESUMEN

Glycosylation regulates functional responses mediated by the interaction of IgG with their receptors. Multiple analytical methods have been designed for the determination of the IgG N-glycan microheterogeneity, including MS methods for the analysis of site specific glycoforms of IgG. However, measurement of low abundant glycoforms remains challenging in complex samples like serum without enrichment of the IgG. We present a workflow for quantitative analysis of site specific glycoforms of IgG based on data independent acquisition (DIA) of Y-ions generated under "minimal" fragmentation conditions. The adjusted collision induced dissociation (CID) conditions generate specific Y-ions in the yield of up to 60% precursor ion intensity. These selective fragments, measured in high resolution, improve specificity of detection compared to the typically quantified B-ions which have higher overall intensity but lower signal-to-noise ratios. Under optimized conditions, we achieve label-free quantification of the majority of previously reported glycoforms of IgG (26 glycoforms of IgG1, 22 glycoforms of IgG 2/3, and 19 glycoforms of IgG4) directly in unfractionated samples of human plasma and we detect traces of previously unreported glycoforms of IgG1, including doubly fucosylated glycoforms. The SWATH data independent quantification of IgG glycoforms in pooled plasma samples of patients with liver cirrhosis detects reliably the expected changes in the quantity of major glycoforms compared to healthy controls. Our results show that optimized CID fragmentation enables DIA of IgG glycoforms and suggest that such workflow may enable quantitative analyses of the glycoproteome in complex matrixes.


Asunto(s)
Glicopéptidos/sangre , Inmunoglobulina G/sangre , Cromatografía Liquida/métodos , Glicopéptidos/química , Glicosilación , Humanos , Inmunoglobulina G/química , Estructura Molecular , Espectrometría de Masas en Tándem/métodos
20.
Clin Proteomics ; 13: 24, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27688741

RESUMEN

BACKGROUND: Non-invasive monitoring of liver disease remains an important health issue. Liver secreted glycoproteins reflect pathophysiological states of the organ and represent a rational target for serologic monitoring. In this study, we describe sialylated O-glycoforms of liver-secreted hemopexin (HPX) and quantify them as a ratio of disialylated to monosialylated form (S-HPX). METHODS: We measured S-HPX in serum of participants of the HALT-C trial using a LC-MS/MS-MRM assay. RESULTS: Repeated measurements of S-HPX in the samples of 23 disease-free controls, collected at four different time points, show that the ratio remains stable in the healthy controls but increases with the progression of liver disease. The results of measurement of S-HPX in serum of participants of the HALT-C trial show that it increased significantly (Kruskal-Wallis test, p < 0.01) in liver disease as the stage of fibrosis progressed in liver biopsies. We observed a 1.7-fold increase in fibrosis defined as Ishak score 3-4 (24.9 + 14.2, n = 22) and 4.7-fold increase in cirrhosis defined as Ishak score 5-6 (68.6 + 38.5; n = 24) compared to disease-free controls (14.7 + 6.7, n = 23). S-HPX is correlated with AFP, bilirubin, INR, ALT, and AST while inversely correlated with platelet count and albumin. In an independent verification set of samples, S-HPX separated the Ishak 5-6 (n = 15) from the Ishak 3-4 (n = 15) participants with AuROC 0.84; at the same time, the Ishak 3-4 group was separated from disease-free controls (n = 15) with AuROC 0.82. CONCLUSION: S-HPX, a measure of sialylated O-glycoforms of hemopexin, progressively increases in fibrotic and cirrhotic patient of HCV etiology and can be quantified by an LC-MS/MS-MRM assay in unfractionated serum of patients. Quantification of sialylated O-glycoforms of this liver secreted glycoprotein represents a novel measure of the stage of liver disease that could have a role in monitoring the progression of liver pathology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA