Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 91: 784-787, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002632

RESUMEN

Psychiatric and neurologic disorders are often characterized by both neuroinflammation and cognitive dysfunction. To date, however, the relationship between neuroinflammation and cognitive dysfunction remains understudied in humans. Preclinical research indicates that experimental induction of neuroinflammation reliably impairs memory processes. In this paradigm development study, we translated those robust preclinical findings to humans using positron emission tomography (PET) imaging with [11C]PBR28, a marker of microglia, and lipopolysaccharide (LPS), a potent neuroimmune stimulus. In a sample of 18 healthy adults, we extended our previous findings that LPS administration increased whole-brain [11C]PBR28 availability by 31-50%, demonstrating a robust neuroimmune response (Cohen's ds > 1.6). We now show that LPS specifically impaired verbal learning and recall, hippocampal memory processes, by 11% and 22%, respectively (Cohen's ds > 0.9), but did not alter attention, motor, or executive processes. The LPS-induced increase in [11C]PBR28 binding was correlated with significantly greater decrements in verbal learning performance in the hippocampus (r = -0.52, p = .028), putamen (r = -0.50, p = .04), and thalamus (r = -0.55, p = .02). This experimental paradigm may be useful in investigating mechanistic relationships between neuroinflammatory signaling and cognitive dysfunction in psychiatric and neurologic disorders. It may also provide a direct approach to evaluate medications designed to rescue cognitive deficits associated with neuroinflammatory dysfunction.


Asunto(s)
Encéfalo , Tomografía de Emisión de Positrones , Adulto , Encéfalo/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Humanos , Memoria , Microglía , Neuroimagen
2.
Eur J Nucl Med Mol Imaging ; 47(13): 3176-3185, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32535652

RESUMEN

PURPOSE: The accumulation of misfolded tau is a common feature of several neurodegenerative disorders, with Alzheimer's disease (AD) being the most common. Earlier we identified JNJ-64326067, a novel isoquinoline derivative with high affinity and selectivity for tau aggregates from human AD brain. We report the dosimetry of [18F] JNJ-64326067 and results of a proof-of-concept study comparing subjects with probable Alzheimer's disease to age-matched healthy controls. METHODS: [18F] JNJ-64326067 PET scans were acquired for 90 min and then from 120 to 180 min in 5 participants with [18F]-florbetapir PET amyloid positive probable AD (73 ± 9 years) and 5 [18F]-florbetapir PET amyloid negative healthy controls (71 ± 7 years). Whole-body [18F] JNJ-64326067 PET CT scans were acquired in six healthy subjects for 5.5 h in 3 scanning sessions. Brain PET scans were visually reviewed. Regional quantification included kinetic analysis of distribution volume ration (DVR) estimated by Logan graphical analysis over the entire scan and static analysis of SUVr in late frames. Both methods used ventral cerebellar cortex as a reference region. RESULTS: One of the healthy controls had focal areas of PET signal in occipital and parietal cortex underlying the site of a gunshot injury as an adolescent; the other four healthy subjects had no tau brain signal. Four of the 5 AD participants had visually apparent retention of [18F] JNJ-64326067 in relevant cortical regions. One of the AD subjects was visually negative. Cortical signal in visually positive subjects approached steady state by 120 min. Temporal and frontal cortical SUVr/DVR values in visually positive AD subjects ranged from 1.21 to 3.09/1.2 to 2.18 and from 0.92 to 1.28/0.91 to 1.16 in healthy controls. Whole-body effective dose was estimated to be 0.0257 mSv/MBq for females and 0.0254 mSv/MBq for males. CONCLUSIONS: [18F] JNJ-64326067 could be useful for detection and quantitation of tau aggregates.


Asunto(s)
Enfermedad de Alzheimer , Adolescente , Enfermedad de Alzheimer/diagnóstico por imagen , Compuestos de Anilina , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Femenino , Radioisótopos de Flúor , Humanos , Isoquinolinas , Cinética , Masculino , Tomografía de Emisión de Positrones , Piridinas , Radiofármacos , Proteínas tau/metabolismo
3.
Eur J Nucl Med Mol Imaging ; 46(11): 2329-2338, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31363804

RESUMEN

PURPOSE: The purpose of this study was to investigate the effects of ageing, sex and body mass index (BMI) on translocator protein (TSPO) availability in healthy subjects using positron emission tomography (PET) and the radioligand [11C]PBR28. METHODS: [11C]PBR28 data from 140 healthy volunteers (72 males and 68 females; N = 78 with HAB and N = 62 MAB genotype; age range 19-80 years; BMI range 17.6-36.9) were acquired with High Resolution Research Tomograph at three centres: Karolinska Institutet (N = 53), Turku PET centre (N = 62) and Yale University PET Center (N = 25). The total volume of distribution (VT) was estimated in global grey matter, frontal, temporal, occipital and parietal cortices, hippocampus and thalamus using multilinear analysis 1. The effects of age, BMI and sex on TSPO availability were investigated using linear mixed effects model, with TSPO genotype and PET centre specified as random intercepts. RESULTS: There were significant positive correlations between age and VT in the frontal and temporal cortex. BMI showed a significant negative correlation with VT in all regions. Additionally, significant differences between males and females were observed in all regions, with females showing higher VT. A subgroup analysis revealed a positive correlation between VT and age in all regions in male subjects, whereas age showed no effect on TSPO levels in female subjects. CONCLUSION: These findings provide evidence that individual biological properties may contribute significantly to the high variation shown in TSPO binding estimates, and suggest that age, BMI and sex can be confounding factors in clinical studies.


Asunto(s)
Índice de Masa Corporal , Tomografía de Emisión de Positrones , Receptores de GABA/química , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Envejecimiento , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Pirimidinas , Factores Sexuales , Adulto Joven
4.
Synapse ; 73(7): e22096, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30835877

RESUMEN

A positron emission tomography (PET) radioligand, [18 F]FMH3, has been developed to interrogate histamine receptor subtype 3 (H3R), where dysfunction at this site is linked with obesity, sleep abnormality, and cognitive disorders. [18 F]FMH3 was evaluated for imaging central H3R sites in non-human primates through test-retest (TRT) and dose-receptor occupancy studies with two selective H3R antagonists in order to support clinical investigations. Two adult female baboons underwent [18 F]FMH3 PET brain scans in the HR+, at repeated baseline (n = 7) and following administration of escalating doses of ABT-239 (0.003-0.1m/kg, n = 4) and ciproxifan (0.5-2.1 mg/kg, n = 7). Volume of distribution (VT ) in brain regions was estimated using the 2-tissue compartment model. TRT variability of VT across repeated baseline scans was reported as % coefficient of variation (COV). ABT-239 and ciproxifan occupancy at H3R was estimated using the occupancy plot, and the relationship of occupancy with dose and plasma levels was determined. In baboons, distribution of [18 F]FMH3 was high in the striatum, intermediate in cortical regions, and low in the brain stem. COV of baseline VT was 7.0 ± 3.5%, averaged across regions and animals. Dose-dependent effects of ABT-239 and ciproxifan measured the brain. ED50 and EC50, respectively, were 0.011 mg/kg and 0.942 ng/ml for ABT-239 and 0.73 mg/kg and 208.3 ng/ml for ciproxifan. [18 F]FMH3 demonstrated high TRT reliability and can be used to measure occupancy of H3R-targeted drugs. Validation in non-human primates support [18 F]FMH3 PET studies toward clinical investigations of H3R.


Asunto(s)
Encéfalo/metabolismo , Radioisótopos de Flúor/farmacocinética , Neuroimagen/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Receptores Histamínicos H3/análisis , Animales , Femenino , Papio , Reproducibilidad de los Resultados
5.
Proc Natl Acad Sci U S A ; 112(40): 12468-73, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26385967

RESUMEN

Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of the Escherichia coli lipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [11C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [11C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [11C]PBR28 scan. LPS administration significantly increased [11C]PBR28 binding 30-60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [11C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects.


Asunto(s)
Encéfalo/inmunología , Lipopolisacáridos/inmunología , Microglía/inmunología , Tomografía de Emisión de Positrones/métodos , Acetamidas/metabolismo , Acetamidas/farmacocinética , Adulto , Biomarcadores/metabolismo , Encéfalo/metabolismo , Radioisótopos de Carbono/metabolismo , Radioisótopos de Carbono/farmacocinética , Citocinas/sangre , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/sangre , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/administración & dosificación , Masculino , Microglía/metabolismo , Unión Proteica , Piridinas/metabolismo , Piridinas/farmacocinética , Radiofármacos/metabolismo , Radiofármacos/farmacocinética , Receptores de GABA/metabolismo , Reproducibilidad de los Resultados , Adulto Joven
6.
Alcohol Clin Exp Res ; 40(4): 698-705, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26971694

RESUMEN

BACKGROUND: Alcohol dependence and tobacco smoking are highly comorbid, and treating both conditions simultaneously is controversial. Previously, we showed that tobacco smoking interferes with GABAA receptor neuroadaptations during alcohol withdrawal in humans, while this effect did not occur with continued nicotine use during alcohol abstinence in nonhuman primates. Here, we extend our previous work by measuring GABAA receptor availability with positron emission tomography (PET) during drug abstinence in nonhuman primates exposed to alcohol alone, nicotine and alcohol together, and alcohol abstinence with continued nicotine exposure. METHODS: Twenty-four adolescent male rhesus macaques orally self-administered alcohol and nicotine, available separately in water and saccharin, over 20 weeks. The groups included alcohol alone (n = 8); nicotine and alcohol with simultaneous abstinence (n = 8); nicotine and alcohol with alcohol abstinence while nicotine was still available (n = 8); and a pilot group of animals consuming nicotine alone (n = 6). Animals were imaged with [(11)C]flumazenil PET to measure binding potential (BPND), an index of GABAA receptor availability. Imaging occurred at baseline (drug-naíve), and following alcohol and/or nicotine cessation at 1 day, 8 days, and 12 weeks of abstinence. Generalized linear mixed models were used to examine the time course of [(11)C]flumazenil BPND during alcohol abstinence across groups. RESULTS: Animals consumed 3.95 ± 1.22 g/kg/d alcohol and 55.4 ± 35.1 mg/kg/d nicotine. No significant group effects were observed in [(11)C]flumazenil BPND during alcohol abstinence; however, a main effect of time was detected. Post hoc analyses indicated that all groups abstaining from alcohol exhibited significantly increased GABAA receptor availability at 1 day and 8 days (but not 12 weeks) of abstinence relative to baseline, while no changes in [(11)C]flumazenil BPND during nicotine abstinence alone were observed. CONCLUSIONS: These data indicate that neither nicotine nor nicotine abstinence interferes with GABAA receptor neuroadaptations during alcohol withdrawal. This conclusion is consistent with our previous study and does not contradict the use of nicotine replacement therapies or non-nicotinic-acting pharmaceuticals to quit smoking during alcohol withdrawal from a GABAergic perspective.


Asunto(s)
Abstinencia de Alcohol , Alcoholismo/metabolismo , Etanol/metabolismo , Nicotina/metabolismo , Receptores de GABA-A/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Adaptación Fisiológica/fisiología , Alcoholismo/diagnóstico por imagen , Animales , Etanol/administración & dosificación , Macaca mulatta , Masculino , Nicotina/administración & dosificación , Tomografía de Emisión de Positrones , Autoadministración , Síndrome de Abstinencia a Sustancias/diagnóstico por imagen
7.
Synapse ; 69(4): 195-202, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25664726

RESUMEN

Findings from clinical and preclinical studies converge to suggest that increased adiposity and/or exposure to a high fat diet are associated with alterations in dorsal striatal (DS) circuitry. In humans there is a reliable inverse relationship between body mass index (BMI) and response to palatable food consumption in the dorsal striatum (DS). Positron emission tomography (PET) studies also suggest altered DS dopamine type 2/3 receptor (D2R/D3R) availability in obesity; however, the direction of the association is unclear. It is also not clear whether dopamine receptor levels contribute to the lower blood oxygen level dependent (BOLD) response because PET studies have targeted the morbidly obese and, functional magnetic resonance imaging (fMRI) studies rarely include individuals with BMIs in this range. Therefore we examined whether the fMRI BOLD response in the DS to milkshake is associated with D2R/D3R availability measured with [(11) C]PHNO and PET in individuals with BMI ranging from healthy weight to moderately obese. Twenty-nine subjects participated in the fMRI study, 12 in the [(11) C]PHNO PET study, 8 of whom also completed the fMRI study. As predicted there was a significant negative association between DS BOLD response to milkshake and BMI. In contrast, BMI was positively associated with D2R/D3R availability. Dorsal striatal BOLD response was unrelated to D2R/D3R availability. Considered in the context of the larger literature our results suggest the existence of a non-linear relationship between D2R/D3R availability and BMI. Additionally, the altered BOLD responses to palatable food consumption observed in obesity are not clearly related to D2R/D3R receptor availability. Using [(11) C]PHNO and PET brain imaging techniques we show that body mass index was positively associated with D2R/D3R availability in the dorsal striatum, but that functional MR BOLD response was unrelated to D2R/D3R availability. These results suggest the existence of a nonlinear relationship between D2R/D3R availability and body mass index and that the altered BOLD responses to food consumption seen in obesity are not directly related to D2R/D3R availability.


Asunto(s)
Índice de Masa Corporal , Cuerpo Estriado/irrigación sanguínea , Cuerpo Estriado/diagnóstico por imagen , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Adulto , Vías Aferentes/fisiología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Agonistas de Dopamina/farmacocinética , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Oxazinas/farmacocinética , Oxígeno/sangre , Tomografía de Emisión de Positrones , Unión Proteica/efectos de los fármacos , Estimulación Química , Adulto Joven
8.
Neuroimage ; 64: 571-81, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22926293

RESUMEN

An important step in PET brain kinetic analysis is the registration of functional data to an anatomical MR image. Typically, PET-MR registrations in nonhuman primate neuroreceptor studies used PET images acquired early post-injection, (e.g., 0-10 min) to closely resemble the subject's MR image. However, a substantial fraction of these registrations (~25%) fail due to the differences in kinetics and distribution for various radiotracer studies and conditions (e.g., blocking studies). The Multi-Transform Method (MTM) was developed to improve the success of registrations between PET and MR images. Two algorithms were evaluated, MTM-I and MTM-II. The approach involves creating multiple transformations by registering PET images of different time intervals, from a dynamic study, to a single reference (i.e., MR image) (MTM-I) or to multiple reference images (i.e., MR and PET images pre-registered to the MR) (MTM-II). Normalized mutual information was used to compute similarity between the transformed PET images and the reference image(s) to choose the optimal transformation. This final transformation is used to map the dynamic dataset into the animal's anatomical MR space, required for kinetic analysis. The chosen transforms from MTM-I and MTM-II were evaluated using visual rating scores to assess the quality of spatial alignment between the resliced PET and reference images. One hundred twenty PET datasets involving eleven different tracers from 3 different scanners were used to evaluate the MTM algorithms. Studies were performed with baboons and rhesus monkeys on the HR+, HRRT, and Focus-220. Successful transformations increased from 77.5%, 85.8%, to 96.7% using the 0-10 min method, MTM-I, and MTM-II, respectively, based on visual rating scores. The Multi-Transform Methods proved to be a robust technique for PET-MR registrations for a wide range of PET studies.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Tomografía de Emisión de Positrones/métodos , Técnica de Sustracción , Algoritmos , Animales , Humanos , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Macaca mulatta , Papio , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
Synapse ; 67(8): 489-501, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23424090

RESUMEN

Detecting changes in receptor binding at the metabotropic glutamate receptor 5 (mGluR5) with the PET allosteric antagonist, [¹¹C]ABP688, may be valuable for studying dysfunctional glutamate transmission associated with psychiatric illnesses. This study was designed to validate the findings of a recent pilot study in baboons which reported a significant global decrease from baseline [¹¹C]ABP688 binding after increasing endogenous glutamate with 50 mg/kg N-acetylcysteine (NAC), with no change from test to retest. In rhesus monkeys (n = 5), paired [¹¹C]ABP688 scans were performed on the same day on the Focus-220 as follows (n = 3 per group): test-retest, baseline-NAC (50 mg/kg), and baseline-NAC (100 mg/kg). Multiple modeling methods were evaluated for kinetic analysis to estimate the total volume of distribution (VT ) and non-displaceable binding potential (BP(ND)) in regions-of-interest (ROIs), with the cerebellum gray matter (CGM) as the reference region. There was an increasing trend from test to retest BP(ND) across ROIs (13%). NAC (50 mg/kg and 100 mg/kg) increased VT (5% and 19%) and decreased BP(ND) (3% and 10%), respectively, significant only for VT in ROIs at the 100 mg/kg dose. High intersubject variability in BP(ND) was comparable to that reported in the baboon study. However, interpretability of BP(ND) is difficult with increases in VT in the CGM reference region at the higher NAC dose. Additionally, the net reduction in BP(ND) from the baseline-NAC scans may be obscured due to observed increases in test-retest BP(ND). Thus, we did not strictly replicate the findings in the baboon study based on BP(ND).


Asunto(s)
Acetilcisteína/farmacología , Oximas/farmacología , Piridinas/farmacología , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Radioisótopos de Carbono/farmacocinética , Radioisótopos de Carbono/farmacología , Femenino , Macaca mulatta , Masculino , Oximas/farmacocinética , Tomografía de Emisión de Positrones , Unión Proteica/efectos de los fármacos , Piridinas/farmacocinética , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Distribución Tisular/efectos de los fármacos
10.
Acta Neuropathol Commun ; 11(1): 88, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264457

RESUMEN

Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are distinct clinicopathological subtypes of frontotemporal lobar degeneration. They both have atypical parkinsonism, and they usually have distinct clinical features. The most common clinical presentation of PSP is Richardson syndrome, and the most common presentation of CBD is corticobasal syndrome. In this report, we describe a patient with a five-year history of Richardson syndrome and a family history of PSP in her mother and sister. A tau PET scan (18F-APN-1607) revealed low-to-moderate uptake in the substantia nigra, globus pallidus, thalamus and posterior cortical areas, including temporal, parietal and occipital cortices. Neuropathological evaluation revealed widespread neuronal and glial tau pathology in cortical and subcortical structures, including tufted astrocytes in the motor cortex, striatum and midbrain tegmentum. The subthalamic nucleus had mild-to-moderate neuronal loss with globose neurofibrillary tangles, consistent with PSP. On the other hand, there were also astrocytic plaques, a pathological hallmark of CBD, in the neocortex and striatum. To further characterize the mixed pathology, we applied two machine learning-based diagnostic pipelines. These models suggested diagnoses of PSP and CBD depending on the brain region - PSP in the motor cortex and superior frontal gyrus and CBD in caudate nucleus. Western blots of insoluble tau from motor cortex showed a banding pattern consistent with mixed features of PSP and CBD, whereas tau from the superior frontal gyrus showed a pattern consistent with CBD. Real-time quaking-induced conversion (RT-QuIC) using brain homogenates from the motor cortex and superior frontal gyrus showed ThT maxima consistent with PSP, while reaction kinetics were consistent with CBD. There were no pathogenic variants in MAPT with whole genome sequencing. We conclude that this patient had an unclassified tauopathy and features of both PSP and CBD. The different pathologies in specific brain regions suggests caution in diagnosis of tauopathies with limited sampling.


Asunto(s)
Degeneración Corticobasal , Neocórtex , Parálisis Supranuclear Progresiva , Tauopatías , Humanos , Femenino , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/genética , Tauopatías/diagnóstico por imagen , Tauopatías/patología , Proteínas tau/genética , Proteínas tau/metabolismo , Ovillos Neurofibrilares/patología , Neocórtex/patología
11.
Nat Commun ; 14(1): 6750, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891183

RESUMEN

A positron emission tomography (PET) tracer detecting α-synuclein pathology will improve the diagnosis, and ultimately the treatment of α-synuclein-related diseases. Here we show that the PET ligand, [18F]ACI-12589, displays good in vitro affinity and specificity for pathological α-synuclein in tissues from patients with different α-synuclein-related disorders including Parkinson's disease (PD) and Multiple-System Atrophy (MSA) using autoradiography and radiobinding techniques. In the initial clinical evaluation we include 23 participants with α-synuclein related disorders, 11 with other neurodegenerative disorders and eight controls. In vivo [18F]ACI-12589 demonstrates clear binding in the cerebellar white matter and middle cerebellar peduncles of MSA patients, regions known to be highly affected by α-synuclein pathology, but shows limited binding in PD. The binding statistically separates MSA patients from healthy controls and subjects with other neurodegenerative disorders, including other synucleinopathies. Our results indicate that α-synuclein pathology in MSA can be identified using [18F]ACI-12589 PET imaging, potentially improving the diagnostic work-up of MSA and allowing for detection of drug target engagement in vivo of novel α-synuclein targeting therapies.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Atrofia de Múltiples Sistemas/metabolismo , Enfermedad de Parkinson/metabolismo , Tomografía de Emisión de Positrones
12.
J Med Chem ; 66(1): 641-656, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36548390

RESUMEN

Therapeutic interventions are being developed for Huntington's disease (HD), a hallmark of which is mutant huntingtin protein (mHTT) aggregates. Following the advancement to human testing of two [11C]-PET ligands for aggregated mHTT, attributes for further optimization were identified. We replaced the pyridazinone ring of CHDI-180 with a pyrimidine ring and minimized off-target binding using brain homogenate derived from Alzheimer's disease patients. The major in vivo metabolic pathway via aldehyde oxidase was blocked with a 2-methyl group on the pyrimidine ring. A strategically placed ring-nitrogen on the benzoxazole core ensured high free fraction in the brain without introducing efflux. Replacing a methoxy pendant with a fluoro-ethoxy group and introducing deuterium atoms suppressed oxidative defluorination and accumulation of [18F]-signal in bones. The resulting PET ligand, CHDI-650, shows a rapid brain uptake and washout profile in non-human primates and is now being advanced to human testing.


Asunto(s)
Enfermedad de Huntington , Tomografía de Emisión de Positrones , Animales , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ligandos , Tomografía de Emisión de Positrones/métodos , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/tratamiento farmacológico , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
13.
Neuroimage ; 56(1): 268-79, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20869448

RESUMEN

[(11)C]MRB is one of the most promising radioligands used to measure brain norepinephrine transporters (NET) with positron emission tomography (PET). The objective of this study was to evaluate the suitability of [(11)C]MRB for drug occupancy studies of NET using atomoxetine (ATX), a NET uptake inhibitor used in the treatment of depression and attention-deficit hyperactivity disorder (ADHD). A second goal of the study was identification of a suitable reference region. Ten PET studies were performed in three anesthetized rhesus monkeys following an infusion of ATX or placebo. [(11)C]MRB arterial input functions and ATX plasma levels were also measured. A dose-dependent reduction of [(11)C]MRB volume of distribution was observed after correction for [(11)C]MRB plasma free fraction. ATX IC(50) was estimated to be 31 ± 10ng/mL plasma. This corresponds to an effective dose (ED(50)) of 0.13mg/kg, which is much lower than the therapeutic dose of ATX in ADHD (1.0-1.5mg/kg). [(11)C]MRB binding potential BP(ND) in the thalamus was estimated to be 1.8 ± 0.3. Defining a reference region for a NET radiotracer is challenging due to the widespread and relatively uniform distribution of NET in the brain. Three regions were evaluated for use as reference region: caudate, putamen and occipital cortex. Caudate was found to be the most suitable for preclinical drug occupancy studies in rhesus monkeys. The IC(50) estimate obtained using MRTM2 BP(ND) without arterial blood sampling was 21 ± 3ng/mL (using caudate as the reference region). This study demonstrated that [(11)C]MRB is suitable for drug occupancy studies of NET.


Asunto(s)
Inhibidores de Captación Adrenérgica/metabolismo , Encéfalo/diagnóstico por imagen , Radioisótopos de Carbono/farmacocinética , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Propilaminas/metabolismo , Radiofármacos/farmacocinética , Animales , Clorhidrato de Atomoxetina , Macaca mulatta , Tomografía de Emisión de Positrones , Distribución Tisular
14.
J Med Chem ; 64(17): 12680-12690, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34423983

RESUMEN

Histone methylation is associated with the pathophysiology of neurodevelopmental disorders. Lysine-specific demethylase 1 (LSD1) catalyzes histone demethylation in a flavin adenine dinucleotide (FAD)-dependent manner. Thus, inhibiting LSD1 enzyme activity could offer a novel way to treat neurodevelopmental disorders. Assessing LSD1 target engagement using positron-emission tomography (PET) imaging could aid in developing therapeutic LSD1 inhibitors. In this study, PET probes based on 4-(2-aminocyclopropyl)benzamide derivatives that bind irreversibly to FAD found in LSD1 were examined. By optimizing the profiles of brain penetrance and brain-penetrant metabolites, T-914 (1g) was identified as a suitable PET tracer candidate. PET studies in nonhuman primates demonstrated that [18F]1g had heterogeneous brain uptake, which corresponded to known LSD1 expression levels. Moreover, brain uptake of [18F]1g was reduced by coadministration of unlabeled 1g, demonstrating blockable binding. These data suggest that [18F]1g warrants further investigation as a potential PET tracer candidate for assessing target engagement of LSD1.


Asunto(s)
Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Histona Demetilasas/química , Histona Demetilasas/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Femenino , Radioisótopos de Flúor , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Macaca fascicularis , Masculino , Tomografía de Emisión de Positrones
15.
J Nucl Med ; 62(9): 1307-1313, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33579806

RESUMEN

Non-catechol-based high-affinity selective dopamine D1 receptor (D1R) agonists were recently described, and candidate PET ligands were selected on the basis of favorable properties. The objective of this study was to characterize in vivo in nonhuman primates 2 novel D1R agonist PET radiotracers, racemic 18F-MNI-800 and its more active atropisomeric (-)-enantiomer, 18F-MNI-968. Methods: Ten brain PET experiments were conducted with 18F-MNI-800 on 2 adult rhesus macaques and 2 adult cynomolgus macaques, and 8 brain PET experiments were conducted with 18F-MNI-968 on 2 adult rhesus macaques and 2 adult cynomolgus macaques. PET data were analyzed with both plasma-input-based methods and reference-region-based methods. Whole-body PET images were acquired with 18F-MNI-800 from 2 adult rhesus macaques for radiation dosimetry estimates. Results:18F-MNI-800 and 18F-MNI-968 exhibited regional uptake consistent with D1R distribution. Specificity and selectivity were demonstrated by dose-dependent blocking with the D1 antagonist SCH-23390. 18F-MNI-968 showed a 30% higher specific signal than 18F-MNI-800, with a nondisplaceable binding potential of approximately 0.3 in the cortex and approximately 1.1 in the striatum. Dosimetry radiation exposure was favorable, with an effective dose of about 0.023 mSv/MBq. Conclusion:18F-MNI-968 has significant potential as a D1R agonist PET radiotracer, and further characterization in human subjects is warranted.


Asunto(s)
Dopamina , Tomografía de Emisión de Positrones , Animales , Macaca mulatta , Imagen de Cuerpo Entero
16.
J Nucl Med ; 61(6): 920-927, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31712324

RESUMEN

18F-PI-2620 is a next-generation tau PET tracer that has demonstrated ability to image the spatial distribution of suspected tau pathology. The objective of this study was to assess the tracer biodistribution, dosimetry, and quantitative methods of 18F-PI-2620 in the human brain. Full kinetic modeling to quantify tau load was investigated. Noninvasive kinetic modeling and semiquantitative methods were evaluated against the full tracer kinetics. Finally, the reproducibility of PET measurements from test and retest scans was assessed. Methods: Three healthy controls (HCs) and 4 Alzheimer disease (AD) subjects underwent 2 dynamic PET scans, including arterial sampling. Distribution volume ratio (DVR) was estimated using full tracer kinetics (reversible 2-tissue-compartment [2TC] model and Logan graphical analysis [LGA]) and noninvasive kinetic models (noninvasive LGA [NI-LGA] and the multilinear reference tissue model [MRTM2]). SUV ratio (SUVR) was determined at different imaging windows after injection. The correlation between DVR and SUVR, effect size (Cohen's d), and test-retest variability (TRV) were evaluated. Additionally, 6 HCs received 1 tracer administration and underwent whole-body PET for dosimetry calculation. Organ doses and the whole-body effective dose were calculated using OLINDA 2.0. Results: A strong correlation was found across different kinetic models (R2 > 0.97) and between DVR(2TC) and SUVR between 30 and 90 min, with an R2 of more than 0.95. Secular equilibrium was reached at around 40 min after injection in most regions and subjects. TRV and effect size for SUVR across different regions were similar at 30-60 min (TRV, 3.8%; Cohen's d, 3.80), 45-75 min (TRV, 4.3%; Cohen's d, 3.77) and 60-90 min (TRV, 4.9%; Cohen's d, 3.73) and increased at later time points. Elimination was via the hepatobiliary and urinary systems. The whole-body effective dose was 33.3 ± 2.1 µSv/MBq for an adult female and 33.1 ± 1.4 µSv/MBq for an adult male, with a 1.5-h urinary bladder voiding interval. Conclusion:18F-PI-2620 exhibits fast kinetics, suitable dosimetry, and low TRV. DVR measured using the 2TC model with arterial sampling correlated strongly with DVR measured by NI-LGA, MRTM2, and SUVR. SUVR can be used for 18F-PI-2620 PET quantification of tau deposits, avoiding arterial blood sampling. Static 18F-PI-2620 PET scans between 45 and 75 min after injection provide excellent quantification accuracy, a large effect size, and low TRV.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/metabolismo , Radioisótopos de Flúor/farmacocinética , Tomografía de Emisión de Positrones/métodos , Piridinas/farmacocinética , Radiofármacos/farmacocinética , Proteínas tau/metabolismo , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Distribución Tisular
17.
Mol Imaging Biol ; 21(3): 509-518, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30084043

RESUMEN

PURPOSE: Synaptic vesicle protein 2A (SV2A) serves as a biomarker of synaptic density and positron emission tomography (PET) imaging of SV2A could provide a tool to assess progression of neurodegenerative diseases. Two tracers have primarily been reported and characterized in vivo: [11C]UCB-J and [18F]UCB-H. In early human studies, [11C]UCB-J showed promising results, while its F-18-labeled analogue [18F]UCB-H showed suboptimal specific signal in comparison to [11C]UCB-J. Considering the limited use of [11C]UCB-J to facilities with a cyclotron, having a F-18 variant would facilitate large, multicenter imaging trials. We have screened several F-18 derivatives of UCB-J in non-human primates and identified a promising F-18 PET candidate, [18F]MNI-1126, with additional investigations of the racemate [18F]MNI-1038, affording a signal comparable to [11C]UCB-J. PROCEDURES: F-18 derivatives of UCB-J and UCB-H were synthesized and administered to non-human primates for microPET imaging. Following screenings, [18F]MNI-1038 (racemate) and [18F]MNI-1126 (R-enantiomer) were identified with the highest signal and favorable kinetics and were selected for further imaging. Kinetic modeling with one- and two-tissue compartmental models, and linear methods were applied to PET data using metabolite-corrected arterial input function. Pre-block scans with levetiracetam (LEV, 10, 30 mg/kg, iv) were performed to determine the tracers' in vivo specificity for SV2A. Two whole-body PET studies were performed with [18F]MNI-1038 in one male and one female rhesus, and radiation absorbed dose estimates and effective dose (ED, ICRP-103) were estimated with OLINDA/EXM 2.0. RESULTS: All compounds screened displayed very good brain penetration, with a plasma-free fraction of ~ 40 %. [18F]MNI-1126 and [18F]MNI-1038 showed uptake and distribution the most consistent with UCB-J, while the other derivatives showed suboptimal results, with similar or lower uptake than [18F]UCB-H. VT of [18F]MNI-1126 and [18F]MNI-1038 was high in all gray matter regions (within animal averages ~ 30 ml/cm3) and highly correlated with [11C]UCB-J (r > 0.99). Pre-blocking of [18F]MNI-1126 or [18F]MNI-1038 with LEV showed robust occupancy across all gray matter regions, similar to that reported with [11C]UCB-J (~ 85 % at 30 mg/kg, ~ 65 % at 10 mg/kg). Using the centrum semiovale as a reference region, BPND of [18F]MNI-1126 reached values of up to ~ 30 to 40 % higher than those reported for [11C]UCB-J. From whole-body imaging average ED of [18F]MNI-1038 was estimated to be 22.3 µSv/MBq, with tracer being eliminated via both urinary and hepatobiliary pathways. CONCLUSIONS: We have identified a F-18-labeled tracer ([18F]MNI-1126) that exhibits comparable in vivo characteristics and specificity for SV2A to [11C]UCB-J in non-human primates, which makes [18F]MNI-1126 a promising PET radiotracer for imaging SV2A in human trials.


Asunto(s)
Radioisótopos de Flúor/química , Proteínas del Tejido Nervioso/metabolismo , Tomografía de Emisión de Positrones , Radiofármacos/química , Vesículas Sinápticas/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Macaca fascicularis , Macaca mulatta , Radiometría , Distribución Tisular
18.
Neuropsychopharmacology ; 43(5): 1052-1058, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28944773

RESUMEN

Guanfacine, a noradrenergic alpha2a agonist, reduced tobacco smoking in a 4-week trial and in animal models has been shown to reduce cortical dopamine release, which is critically involved in the reinforcing effect of tobacco smoking. We measured amphetamine-induced extrastriatal dopamine release before and after treatment with guanfacine with [11C]FLB457, a dopamine D2/D3 receptor radiotracer, and positron emission tomography (PET). Sixteen tobacco smokers had one set of [11C]FLB457 PET scans on the same day, one before and one at 2.5-3 h after amphetamine (0.4-0.5 mg/kg, PO). A subset (n=12) then underwent guanfacine treatment (3 mg/day for 3 weeks) and the set of scans were repeated. [11C]FLB457-binding potential (BPND) was measured pre- and post amphetamine in extrastriatal brain regions. The fractional change in BPND after vs before amphetamine (Δ BPND) is an indirect measure of DA release and was compared between the untreated and guanfacine-treated conditions. Guanfacine treatment attenuated amphetamine-induced DA release; however, the change was due to a global 8% decrease in baseline BPND from the untreated to the guanfacine-treated condition. Chronic guanfacine treatment reduced [11C]FLB457 BPND in tobacco smokers, suggesting an increase in dopaminergic tone. Guanfacine-induced normalization of dopamine signaling may be an important mesocortical mechanism contributing to its ability to aid in tobacco smoking cessation.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Dopamina/metabolismo , Guanfacina/farmacología , Tomografía de Emisión de Positrones , Pirrolidinas/metabolismo , Salicilamidas/metabolismo , Fumadores , Adulto , Anfetamina/farmacología , Radioisótopos de Carbono , Femenino , Humanos , Masculino , Neuroimagen , Ensayo de Unión Radioligante , Factores de Tiempo , Adulto Joven
19.
Curr Top Behav Neurosci ; 24: 1-17, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25638332

RESUMEN

Receptor imaging, including positron emission computed tomography (PET) and single photon emission computed tomography (SPECT), provides a way to measure chemicals of interest, such as receptors, and neurotransmitter fluctuations, in the living human brain. Imaging the neurochemical mechanisms involved in the maintenance and recovery from tobacco smoking has provided insights into critical smoking related brain adaptations. Nicotine, the primary addictive chemical in tobacco smoke, enters the brain, activates beta2-nicotinic acetylcholine receptors (ß2*-nAChRs) and, like most drugs of abuse, elicits dopamine (DA) release in the ventral striatum. Both ß2*-nAChRs and DA signaling are critical neurosubstrates underlying tobacco smoking behaviors and dependence and have been studied extensively with PET and SPECT brain imaging. We review the imaging literature on these topics and describe how brain imaging has helped inform the treatment of tobacco smoking.


Asunto(s)
Encéfalo/metabolismo , Dopamina/metabolismo , Nicotina/metabolismo , Tomografía de Emisión de Positrones/métodos , Receptores Nicotínicos/metabolismo , Tomografía Computarizada de Emisión de Fotón Único/métodos , Encéfalo/efectos de los fármacos , Humanos , Fumar
20.
J Cereb Blood Flow Metab ; 35(4): 623-9, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25564239

RESUMEN

Detecting fluctuations in synaptic dopamine levels in extrastriatal brain regions with [(11)C]FLB 457 and positron emission tomography (PET) is a valuable tool for studying dopaminergic dysfunction in psychiatric disorders. The evaluation of reference region modeling approaches would eliminate the need to obtain arterial input function data. Our goal was to explore the use of reference region models to estimate amphetamine-induced changes in [(11)C]FLB 457 dopamine D2/D3 binding. Six healthy tobacco smokers were imaged with [(11)C]FLB 457 at baseline and at 3 hours after amphetamine (0.4 to 0.5 mg/kg, per os) administration. Simplified reference tissue models, SRTM and SRTM2, were evaluated against the 2-tissue compartmental model (2TC) to estimate [(11)C]FLB 457 binding in extrastriatal regions of interest (ROIs), using the cerebellum as a reference region. No changes in distribution volume were observed in the cerebellum between scan conditions. SRTM and SRTM2 underestimated binding, compared with 2TC, in ROIs by 26% and 9%, respectively, with consistent bias between the baseline and postamphetamine scans. Postamphetamine, [(11)C]FLB 457 binding significantly decreased across several brain regions as measured with SRTM and SRTM2; no significant change was detected with 2TC. These data support the sensitivity of [(11)C]FLB 457 for measuring amphetamine-induced dopamine release in extrastriatal regions with SRTM and SRTM2.


Asunto(s)
Anfetamina/farmacología , Dopaminérgicos/farmacología , Tomografía de Emisión de Positrones , Pirrolidinas/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Salicilamidas/metabolismo , Adulto , Anfetamina/administración & dosificación , Anfetamina/sangre , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Dopaminérgicos/administración & dosificación , Dopaminérgicos/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Pirrolidinas/análisis , Salicilamidas/análisis , Fumar/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA