Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38460548

RESUMEN

OBJECTIVE: To examine disease and target engagement biomarkers in the RISE-SSc trial of riociguat in early diffuse cutaneous systemic sclerosis and their potential to predict the response to treatment. METHODS: Patients were randomized to riociguat (n = 60) or placebo (n = 61) for 52 weeks. Skin biopsies and plasma/serum samples were obtained at baseline and week 14. Plasma cyclic guanosine monophosphate (cGMP) was assessed using radio-immunoassay. Alpha smooth muscle actin (αSMA) and skin thickness were determined by immunohistochemistry, mRNA markers of fibrosis by qRT-PCR in skin biopsies, and serum CXC motif chemokine ligand 4 (CXCL-4) and soluble platelet endothelial cell adhesion molecule-1 (sPECAM-1) by enzyme-linked immunosorbent assay. RESULTS: By week 14, cGMP increased by 94 ± 78% with riociguat and 10 ± 39% with placebo (p < 0.001, riociguat vs placebo). Serum sPECAM-1 and CXCL-4 decreased with riociguat vs placebo (p = 0.004 and p = 0.008, respectively). There were no differences in skin collagen markers between the 2 groups. Higher baseline serum sPECAM-1 or the detection of αSMA-positive cells in baseline skin biopsies were associated with a larger reduction of modified Rodnan skin score from baseline at week 52 with riociguat vs placebo (interaction P-values 0.004 and 0.02, respectively). CONCLUSION: Plasma cGMP increased with riociguat, suggesting engagement with the nitric oxide-soluble guanylate cyclase-cGMP pathway. Riociguat was associated with a significant reduction in sPECAM-1 (an angiogenic biomarker) vs placebo. Elevated sPECAM-1 and the presence of αSMA-positive skin cells may help to identify patients who could benefit from riociguat in terms of skin fibrosis. TRIAL REGISTRATION: Clinicaltrials.gov, NCT02283762.

2.
Pharmacol Res ; 197: 106970, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37884069

RESUMEN

Vascular cognitive impairment (VCI) describes neurodegenerative disorders characterized by a vascular component. Pathologically, it involves decreased cerebral blood flow (CBF), white matter lesions, endothelial dysfunction, and blood-brain barrier (BBB) impairments. Molecularly, oxidative stress and inflammation are two of the major underlying mechanisms. Nitric oxide (NO) physiologically stimulates soluble guanylate cyclase (sGC) to induce cGMP production. However, under pathological conditions, NO seems to be at the basis of oxidative stress and inflammation, leading to a decrease in sGC activity and expression. The native form of sGC needs a ferrous heme group bound in order to be sensitive to NO (Fe(II)sGC). Oxidation of sGC leads to the conversion of ferrous to ferric heme (Fe(III)sGC) and even heme-loss (apo-sGC). Both Fe(III)sGC and apo-sGC are insensitive to NO, and the enzyme is therefore inactive. sGC activity can be enhanced either by targeting the NO-sensitive native sGC (Fe(II)sGC), or the inactive, oxidized sGC (Fe(III)sGC) and the heme-free apo-sGC. For this purpose, sGC stimulators acting on Fe(II)sGC and sGC activators acting on Fe(III)sGC/apo-sGC have been developed. These sGC agonists have shown their efficacy in cardiovascular diseases by restoring the physiological and protective functions of the NO-sGC-cGMP pathway, including the reduction of oxidative stress and inflammation, and improvement of vascular functioning. Yet, only very little research has been performed within the cerebrovascular system and VCI pathology when focusing on sGC modulation and its potential protective mechanisms on vascular and neural function. Therefore, within this review, the potential of sGC as a target for treating VCI is highlighted.


Asunto(s)
Disfunción Cognitiva , Enfermedades Vasculares , Humanos , Guanilil Ciclasa Soluble , Disfunción Cognitiva/tratamiento farmacológico , GMP Cíclico , Hemo , Inflamación
3.
J Pathol ; 256(4): 442-454, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34936088

RESUMEN

Benign prostatic hyperplasia (BPH) is a feature of ageing males. Up to half demonstrate bladder outlet obstruction (BOO) with associated lower urinary tract symptoms (LUTS) including bladder overactivity. Current therapies to reduce obstruction, such as α1-adrenoceptor antagonists and 5α-reductase inhibitors, are not effective in all patients. The phosphodiesterase-5 inhibitor (PDE5I) tadalafil is also approved to treat BPH and LUTS, suggesting a role for nitric oxide (NO• ), soluble guanylate cyclase (sGC), and cGMP signalling pathways. However, PDE5I refractoriness can develop for reasons including nitrergic nerve damage and decreased NO• production, or inflammation-related oxidation of the sGC haem group, normally maintained in a reduced state by the cofactor cytochrome-b5-reductase 3 (CYB5R3). sGC activators, such as cinaciguat (BAY 58-2667), have been developed to enhance sGC activity in the absence of NO• or when sGC is oxidised. Accordingly, their effects on the prostate and LUT function of aged mice were evaluated. Aged mice (≥24 months) demonstrated a functional BPH/BOO phenotype, compared with adult animals (2-12 months), with low, delayed voiding responses and elevated intravesical pressures as measured by telemetric cystometry. This was consistent with outflow tract histological and molecular data that showed urethral constriction, increased prostate weight, greater collagen deposition, and cellular hyperplasia. All changes in aged animals were attenuated by daily oral treatment with cinaciguat for 2 weeks, without effect on serum testosterone levels. Cinaciguat had only transient (1 h) cardiovascular effects with oral gavage, suggesting a positive safety profile. The benefit of cinaciguat was suggested by its reversal of an overactive cystometric profile in CYB5R3 smooth muscle knockout mice that mirrors a profile of oxidative dysfunction where PDE5I may not be effective. Thus, the aged male mouse is a suitable model for BPH-induced BOO and cinaciguat has a demonstrated ability to reduce prostate-induced obstruction and consequent effects on bladder function. © 2021 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Hiperplasia Prostática , Animales , Humanos , Masculino , Ratones , Óxido Nítrico/metabolismo , Oxidorreductasas , Próstata/metabolismo , Hiperplasia Prostática/tratamiento farmacológico , Guanilil Ciclasa Soluble
4.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686032

RESUMEN

Chronic kidney disease (CKD) progression is associated with persisting oxidative stress, which impairs the NO-sGC-cGMP signaling cascade through the formation of oxidized and heme-free apo-sGC that cannot be activated by NO. Runcaciguat (BAY 1101042) is a novel, potent, and selective sGC activator that binds and activates oxidized and heme-free sGC and thereby restores NO-sGC-cGMP signaling under oxidative stress. Therefore, runcaciguat might represent a very effective treatment option for CKD/DKD. The potential kidney-protective effects of runcaciguat were investigated in ZSF1 rats as a model of CKD/DKD, characterized by hypertension, hyperglycemia, obesity, and insulin resistance. ZSF1 rats were treated daily orally for up to 12 weeks with runcaciguat (1, 3, 10 mg/kg/bid) or placebo. The study endpoints were proteinuria, kidney histopathology, plasma, urinary biomarkers of kidney damage, and gene expression profiling to gain information about relevant pathways affected by runcaciguat. Furthermore, oxidative stress was compared in the ZSF1 rat kidney with kidney samples from DKD patients. Within the duration of the 12-week treatment study, kidney function was significantly decreased in obese ZSF1 rats, indicated by a 20-fold increase in proteinuria, compared to lean ZSF1 rats. Runcaciguat dose-dependently and significantly attenuated the development of proteinuria in ZSF1 rats with reduced uPCR at the end of the study by -19%, -54%, and -70% at 1, 3, and 10 mg/kg/bid, respectively, compared to placebo treatment. Additionally, average blood glucose levels measured as HbA1C, triglycerides, and cholesterol were increased by five times, twenty times, and four times, respectively, in obese ZSF1 compared to lean rats. In obese ZSF1 rats, runcaciguat reduced HbA1c levels by -8%, -34%, and -76%, triglycerides by -42%, -55%, and -71%, and cholesterol by -16%, -17%, and -34%, at 1, 3, and 10 mg/kg/bid, respectively, compared to placebo. Concomitantly, runcaciguat also reduced kidney weights, morphological kidney damage, and urinary and plasma biomarkers of kidney damage. Beneficial effects were accompanied by changes in gene expression that indicate reduced fibrosis and inflammation and suggest improved endothelial stabilization. In summary, the sGC activator runcaciguat significantly prevented a decline in kidney function in a DKD rat model that mimics common comorbidities and conditions of oxidative stress of CKD patients. Thus, runcaciguat represents a promising treatment option for CKD patients, which is in line with recent phase 2 clinical study data, where runcaciguat showed promising efficacy in CKD patients (NCT04507061).


Asunto(s)
Riñón , Insuficiencia Renal Crónica , Animales , Ratas , GMP Cíclico , Hemoglobina Glucada , Hemo , Obesidad , Proteinuria , Insuficiencia Renal Crónica/tratamiento farmacológico , Ensayos Clínicos Fase II como Asunto
5.
Respir Res ; 23(1): 272, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36183104

RESUMEN

BACKGROUND: Oxidative stress associated with severe cardiopulmonary diseases leads to impairment in the nitric oxide/soluble guanylate cyclase signaling pathway, shifting native soluble guanylate cyclase toward heme-free apo-soluble guanylate cyclase. Here we describe a new inhaled soluble guanylate cyclase activator to target apo-soluble guanylate cyclase and outline its therapeutic potential. METHODS: We aimed to generate a novel soluble guanylate cyclase activator, specifically designed for local inhaled application in the lung. We report the discovery and in vitro and in vivo characterization of the soluble guanylate cyclase activator mosliciguat (BAY 1237592). RESULTS: Mosliciguat specifically activates apo-soluble guanylate cyclase leading to improved cardiopulmonary circulation. Lung-selective effects, e.g., reduced pulmonary artery pressure without reduced systemic artery pressure, were seen after inhaled but not after intravenous administration in a thromboxane-induced pulmonary hypertension minipig model. These effects were observed over a broad dose range with a long duration of action and were further enhanced under experimental oxidative stress conditions. In a unilateral broncho-occlusion minipig model, inhaled mosliciguat decreased pulmonary arterial pressure without ventilation/perfusion mismatch. With respect to airway resistance, mosliciguat showed additional beneficial bronchodilatory effects in an acetylcholine-induced rat model. CONCLUSION: Inhaled mosliciguat may overcome treatment limitations in patients with pulmonary hypertension by improving pulmonary circulation and airway resistance without systemic exposure or ventilation/perfusion mismatch. Mosliciguat has the potential to become a new therapeutic paradigm, exhibiting a unique mode of action and route of application, and is currently under clinical development in phase Ib for pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar , Acetilcolina , Animales , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/uso terapéutico , Óxido Nítrico/metabolismo , Ratas , Guanilil Ciclasa Soluble/metabolismo , Guanilil Ciclasa Soluble/uso terapéutico , Porcinos , Porcinos Enanos/metabolismo , Tromboxanos/uso terapéutico , Vasodilatadores
6.
Nitric Oxide ; 119: 1-8, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34871799

RESUMEN

In heart failure with reduced ejection fraction (HFrEF), nitric oxide-soluble guanylyl cyclase (sGC) pathway dysfunction impairs skeletal muscle arteriolar vasodilation and thus capillary hemodynamics, contributing to impaired oxygen uptake (V̇O2) kinetics. Targeting this pathway with sGC activators offers a new treatment approach to HFrEF. We tested the hypotheses that sGC activator administration would increase the O2 delivery (Q̇O2)-to-V̇O2 ratio in the skeletal muscle interstitial space (PO2is) of HFrEF rats during twitch contractions due, in part, to increases in red blood cell (RBC) flux (fRBC), velocity (VRBC), and capillary hematocrit (Hctcap). HFrEF was induced in male Sprague-Dawley rats via myocardial infarction. After 3 weeks, rats were treated with 0.3 mg/kg of the sGC activator BAY 60-2770 (HFrEF + BAY; n = 11) or solvent (HFrEF; n = 9) via gavage b.i.d for 5 days prior to phosphorescence quenching (PO2is, in contracting muscle) and intravital microscopy (resting) measurements in the spinotrapezius muscle. Intravital microscopy revealed higher fRBC (70 ± 9 vs 25 ± 8 RBC/s), VRBC (490 ± 43 vs 226 ± 35 µm/s), Hctcap (16 ± 1 vs 10 ± 1%) and a greater number of capillaries supporting flow (91 ± 3 vs 82 ± 3%) in HFrEF + BAY vs HFrEF (all P < 0.05). Additionally, PO2is was especially higher during 12-34s of contractions in HFrEF + BAY vs HFrEF (P < 0.05). Our findings suggest that sGC activators improved resting Q̇O2 via increased fRBC, VRBC, and Hctcap allowing for better Q̇O2-to-V̇O2 matching during the rest-contraction transient, supporting sGC activators as a potential therapeutic to target skeletal muscle vasomotor dysfunction in HFrEF.


Asunto(s)
Benzoatos/farmacología , Compuestos de Bifenilo/farmacología , Capilares/metabolismo , Insuficiencia Cardíaca/sangre , Hidrocarburos Fluorados/farmacología , Músculo Esquelético/metabolismo , Oxígeno/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Animales , Monitoreo de Gas Sanguíneo Transcutáneo , Hemodinámica , Masculino , Ratas Sprague-Dawley
7.
Clin Nephrol ; 97(2): 63-69, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34779388

RESUMEN

Vitamin D contributes to blood pressure (BP) regulation. We compared the association of BP in diabetic patients with either total vitamin D - the standard way of analyzing the vitamin D status - or free vitamin D, because only free vitamin D passes the cell membrane and interacts with the nuclear vitamin D receptor (VDR). An analytical cross-sectional study was conducted with 178 diabetic patients with impaired kidney function. Free and total vitamin D concentrations were measured in all patients. Multiple linear regression analysis considering patient age, sex, body mass index, height, smoking and drinking situation, the use of antihypertensive drugs, cholecalciferol treatment, C-reactive protein and estimated glomerular filtration rate as confounding factors were conducted to compare the association of free and total vitamin D with systolic and diastolic blood pressure (SBP and DBP). Multiple linear regression analysis revealed that neither SBP nor DBP was correlated with total vitamin D (SBP, 95% CI -0.405 ~ 0.159, p = 0.390; DBP, 95% CI -0.131 ~ 0.142, p = 0.933) (Table 2). However, the concentration of free vitamin D was independently associated with SBP (95% CI -2.691 ~ -0.210; p = 0.022) (Table 3), but not with DBP (95% CI -0.934 ~ 0.285; p = 0.293). In conclusion, free - but not total - vitamin D serum concentrations in patients with diabetes and impaired kidney function are inversely correlated with SBP. This study suggests that free vitamin D measurements might be more clinically relevant - as compared to measurements of total vitamin D - to adjust vitamin D therapy in diabetic patients with impaired kidney function.


Asunto(s)
Diabetes Mellitus , Hipertensión , Presión Sanguínea , Estudios Transversales , Humanos , Hipertensión/diagnóstico , Hipertensión/tratamiento farmacológico , Riñón , Vitamina D
8.
Am J Nephrol ; 52(8): 642-652, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34111864

RESUMEN

INTRODUCTION: The nonsteroidal mineralocorticoid receptor (MR) antagonist finerenone and sodium-glucose cotransporter-2 (SGLT2) inhibitors have demonstrated clinical benefits in CKD patients with type 2 diabetes. Clinical data analyzing the potential value of a combination therapy are currently limited. We therefore investigated cardiorenal protection of respective mono- and combination therapy in a preclinical model of hypertension-induced end-organ damage. METHODS: Cardiovascular (CV) morbidity and mortality were studied in hypertensive, N(ω)-nitro-L-arginine methyl ester-treated, renin-transgenic (mRen2)27 rats. Rats (10- to 11-week-old females, n = 13-17/group) were treated once daily orally for up to 7 weeks with placebo, finerenone (1 and 3 mg/kg), empagliflozin (3 and 10 mg/kg), or a combination of the respective low doses. Key outcome parameters included mortality, proteinuria, plasma creatinine and uric acid, blood pressure, and cardiac and renal histology. RESULTS: Placebo-treated rats demonstrated a 50% survival rate over the course of 7 weeks. Drug treatment resulted in variable degrees of survival benefit, most prominently in the low-dose combination group with a survival benefit of 93%. Monotherapies of finerenone or empagliflozin dose-dependently reduced proteinuria, while low-dose combination revealed an early, sustained, and over-additive reduction in proteinuria. Empagliflozin induced a strong and dose-dependent increase in urinary glucose excretion which was not influenced by finerenone coadministration in the combination arm. Low-dose combination but not respective low-dose monotherapies significantly reduced plasma creatinine and plasma uric acid after 6 weeks. Treatment with finerenone and the low-dose combination significantly decreased systolic blood pressure after 5 weeks. There was a dose-dependent protection from cardiac and kidney fibrosis and vasculopathy with both agents, while low-dose combination therapy was more efficient than the respective monotherapy dosages on most cardiorenal histology parameters. DISCUSSION/CONCLUSIONS: Nonsteroidal MR antagonism by finerenone and SGLT2 inhibition by empagliflozin confer CV protection in preclinical hypertension-induced cardiorenal disease. Combination of these 2 independent modes of action at low dosages revealed efficacious reduction in important functional parameters such as proteinuria and blood pressure, plasma markers including creatinine and uric acid, cardiac and renal lesions as determined by histopathology, and mortality indicating a strong potential for combined clinical use in cardiorenal patient populations.


Asunto(s)
Compuestos de Bencidrilo/administración & dosificación , Glucósidos/administración & dosificación , Cardiopatías/prevención & control , Enfermedades Renales/prevención & control , Naftiridinas/administración & dosificación , Inhibidores del Cotransportador de Sodio-Glucosa 2/administración & dosificación , Animales , Modelos Animales de Enfermedad , Combinación de Medicamentos , Femenino , Cardiopatías/etiología , Hipertensión/complicaciones , Enfermedades Renales/etiología , Ratas
9.
Handb Exp Pharmacol ; 264: 355-394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-30689085

RESUMEN

When Furchgott, Murad, and Ignarro were honored with the Nobel prize for the identification of nitric oxide (NO) in 1998, the therapeutic implications of this discovery could not be fully anticipated. This was due to the fact that available therapeutics like NO donors did not allow a constant and long-lasting cyclic guanylyl monophosphate (cGMP) stimulation and had a narrow therapeutic window. Now, 20 years later, the stimulator of soluble guanylate cyclase (sGC), riociguat, is on the market and is the only drug approved for the treatment of two forms of pulmonary hypertension (PAH/CTEPH), and a variety of other sGC stimulators and sGC activators are in preclinical and clinical development for additional indications. The discovery of sGC stimulators and sGC activators is a milestone in the field of NO/sGC/cGMP pharmacology. The sGC stimulators and sGC activators bind directly to reduced, heme-containing and oxidized, heme-free sGC, respectively, which results in an increase in cGMP production. The action of sGC stimulators at the heme-containing enzyme is independent of NO but is enhanced in the presence of NO whereas the sGC activators interact with the heme-free form of sGC. These highly innovative pharmacological principles of sGC stimulation and activation seem to have a very broad therapeutic potential. Therefore, in both academia and industry, intensive research and development efforts have been undertaken to fully exploit the therapeutic benefit of these new compound classes. Here we summarize the discovery of sGC stimulators and sGC activators and the current developments in both compound classes, including the mode of action, the chemical structures, and the genesis of the terminology and nomenclature. In addition, preclinical studies exploring multiple aspects of their in vitro, ex vivo, and in vivo pharmacology are reviewed, providing an overview of multiple potential applications. Finally, the clinical developments, investigating the treatment potential of these compounds in various diseases like heart failure, diabetic kidney disease, fibrotic diseases, and hypertension, are reported. In summary, sGC stimulators and sGC activators have a unique mode of action with a broad treatment potential in cardiovascular diseases and beyond.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , GMP Cíclico , Guanilato Ciclasa , Humanos , Óxido Nítrico , Guanilil Ciclasa Soluble
10.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360780

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder, affecting one in 3500 to 5000 boys worldwide. The NO-sGC-cGMP pathway plays an important role in skeletal muscle function, primarily by improving blood flow and oxygen supply to the muscles during exercise. In fact, PDE5 inhibitors have previously been investigated as a potential therapy for DMD, however, a large-scale Phase III clinical trial did not meet its primary endpoint. Since the efficacy of PDE5i is dependent on sufficient endogenous NO production, which might be impaired in DMD, we investigated if NO-independent sGC stimulators, could have therapeutic benefits in a mouse model of DMD. Male mdx/mTRG2 mice aged six weeks were given food supplemented with the sGC stimulator, BAY-747 (150 mg/kg of food) or food alone (untreated) ad libitum for 16 weeks. Untreated C57BL6/J mice were used as wild type (WT) controls. Assessments of the four-limb hang, grip strength, running wheel and serum creatine kinase (CK) levels showed that mdx/mTRG2 mice had significantly reduced skeletal muscle function and severe muscle damage compared to WT mice. Treatment with BAY-747 improved grip strength and running speed, and these mice also had reduced CK levels compared to untreated mdx/mTRG2 mice. We also observed increased inflammation and fibrosis in the skeletal muscle of mdx/mTRG2 mice compared to WT. While gene expression of pro-inflammatory cytokines and some pro-fibrotic markers in the skeletal muscle was reduced following BAY-747 treatment, there was no reduction in infiltration of myeloid immune cells nor collagen deposition. In conclusion, treatment with BAY-747 significantly improves several functional and pathological parameters of the skeletal muscle in mdx/mTRG2 mice. However, the effect size was moderate and therefore, more studies are needed to fully understand the potential treatment benefit of sGC stimulators in DMD.


Asunto(s)
Activadores de Enzimas/farmacología , Músculo Esquelético/enzimología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Guanilil Ciclasa Soluble/metabolismo , Animales , Ratones , Ratones Endogámicos mdx , Ratones Transgénicos , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/enzimología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología
11.
Am J Respir Cell Mol Biol ; 62(1): 43-48, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31340135

RESUMEN

The soluble guanylyl cyclase (sGC)-cyclic guanosine monophosphate signaling pathway evokes vascular smooth muscle relaxation; whether this pathway mediates airway smooth muscle relaxation remains controversial. We posit that sGC activators are equi-effective as ß-agonists in reversing contractile agonist-induced airway smooth muscle shortening. To provide clarity, we tested the efficacy of sGC stimulator and activator drugs, BAY 41-2272 and BAY 60-2270, respectively, in reversing bronchoconstriction of human small airways using human precision-cut lung slices (hPCLS). Both BAY drugs reversed carbachol-induced bronchoconstriction to a maximal degree comparable to that of formoterol. Moreover, the sGC drugs remained effective bronchodilators despite formoterol-induced desensitization of the airways. Analysis of the hPCLS after their activation by sGC or ß2-adrenergic receptor agonist showed distinct cyclic nucleotide accumulation in the hPCLS. Collectively, these data suggest that cAMP and cyclic guanosine monophosphate pathways are equi-effective for reversing carbachol-induced bronchoconstriction in the human airway via separate and distinct second messenger pathways. This should open the door for future studies to test whether sGC-targeted drugs alone or in combination can serve as effective bronchodilators in asthma and chronic obstructive pulmonary disease.


Asunto(s)
Broncodilatadores/farmacología , Músculo Liso/efectos de los fármacos , Sistema Respiratorio/efectos de los fármacos , Guanilil Ciclasa Soluble/metabolismo , Asma/tratamiento farmacológico , Asma/metabolismo , Broncoconstricción/efectos de los fármacos , GMP Cíclico/metabolismo , Humanos , Contracción Muscular/efectos de los fármacos , Relajación Muscular/efectos de los fármacos , Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Sistema Respiratorio/metabolismo , Transducción de Señal/efectos de los fármacos , Tráquea/efectos de los fármacos , Tráquea/metabolismo
12.
Am J Respir Cell Mol Biol ; 58(5): 636-647, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29268036

RESUMEN

Sickle cell disease (SCD) is associated with intravascular hemolysis and oxidative inhibition of nitric oxide (NO) signaling. BAY 54-6544 is a small-molecule activator of oxidized soluble guanylate cyclase (sGC), which, unlike endogenous NO and the sGC stimulator, BAY 41-8543, preferentially binds and activates heme-free, NO-insensitive sGC to restore enzymatic cGMP production. We tested orally delivered sGC activator, BAY 54-6544 (17 mg/kg/d), sGC stimulator, BAY 41-8543, sildenafil, and placebo for 4-12 weeks in the Berkeley transgenic mouse model of SCD (BERK-SCD) and their hemizygous (Hemi) littermate controls (BERK-Hemi). Right ventricular (RV) maximum systolic pressure (RVmaxSP) was measured using micro right-heart catheterization. RV hypertrophy (RVH) was determined using Fulton's index and RV corrected weight (ratio of RV to tibia). Pulmonary artery vasoreactivity was tested for endothelium-dependent and -independent vessel relaxation. Right-heart catheterization revealed higher RVmaxSP and RVH in BERK-SCD versus BERK-Hemi, which worsened with age. Treatment with the sGC activator more effectively lowered RVmaxSP and RVH, with 90-day treatment delivering superior results, when compared with other treatments and placebo groups. In myography experiments, acetylcholine-induced (endothelium-dependent) and sodium-nitroprusside-induced (endothelium-independent NO donor) relaxation of the pulmonary artery harvested from placebo-treated BERK-SCD was impaired relative to BERK-Hemi but improved after therapy with sGC activator. By contrast, no significant effect for sGC stimulator or sildenafil was observed in BERK-SCD. These findings suggest that sGC is oxidized in the pulmonary arteries of transgenic SCD mice, leading to blunted responses to NO, and that the sGC activator, BAY 54-6544, may represent a novel therapy for SCD-associated pulmonary arterial hypertension and cardiac remodeling.


Asunto(s)
Anemia de Células Falciformes/complicaciones , Activadores de Enzimas/farmacología , Ventrículos Cardíacos/efectos de los fármacos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertrofia Ventricular Izquierda/prevención & control , Arteria Pulmonar/efectos de los fármacos , Guanilil Ciclasa Soluble/metabolismo , Disfunción Ventricular Derecha/tratamiento farmacológico , Función Ventricular Derecha/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Anemia de Células Falciformes/genética , Animales , Presión Arterial/efectos de los fármacos , Modelos Animales de Enfermedad , Activación Enzimática , Activadores de Enzimas/farmacocinética , Ventrículos Cardíacos/enzimología , Ventrículos Cardíacos/fisiopatología , Hipertensión Pulmonar/enzimología , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Izquierda/enzimología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/fisiopatología , Ratones Transgénicos , Morfolinas/farmacología , Óxido Nítrico/metabolismo , Arteria Pulmonar/enzimología , Arteria Pulmonar/fisiopatología , Pirimidinas/farmacología , Citrato de Sildenafil/farmacología , Vasodilatación/efectos de los fármacos , Disfunción Ventricular Derecha/enzimología , Disfunción Ventricular Derecha/genética , Disfunción Ventricular Derecha/fisiopatología , Presión Ventricular/efectos de los fármacos
13.
Biol Chem ; 399(7): 679-690, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29604206

RESUMEN

Nitric oxide (NO) signaling represents one of the major regulatory pathways for cardiovascular function. After the discovery of NO, awarded with the Nobel Prize in 1998, this signaling cascade was stepwise clarified. We now have a good understanding of NO production and NO downstream targets such as the soluble guanylyl cyclases (sGCs) which catalyze cGMP production. Based on the important role of NO-signaling in the cardiovascular system, intense research and development efforts are currently ongoing to fully exploit the therapeutic potential of cGMP increase. Recently, NO-independent stimulators of sGC (sGC stimulators) were discovered and characterized. This new compound class has a unique mode of action, directly binding to sGC and triggering cGMP production. The first sGC stimulator made available to patients is riociguat, which was approved in 2013 for the treatment of different forms of pulmonary hypertension (PH). Besides riociguat, other sGC stimulators are in clinical development, with vericiguat in phase 3 clinical development for the treatment of chronic heart failure (HF). Based on the broad impact of NO/cGMP signaling, sGC stimulators could have an even broader therapeutic potential beyond PH and HF. Within this review, the NO/sGC/cGMP/PKG/PDE-signaling cascade and the major pharmacological intervention sites are described. In addition, the discovery and mode of action of sGC stimulators and the clinical development in PH and HF is covered. Finally, the preclinical and clinical evidence and treatment approaches for sGC stimulators beyond these indications and the cardiovascular disease space, like in fibrotic diseases as in systemic sclerosis (SSc), are reviewed.


Asunto(s)
Activadores de Enzimas/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Hipertensión Pulmonar/tratamiento farmacológico , Esclerodermia Sistémica/tratamiento farmacológico , Guanilil Ciclasa Soluble/metabolismo , Enfermedad Crónica , Humanos , Óxido Nítrico/metabolismo , Transducción de Señal
14.
Basic Res Cardiol ; 113(4): 24, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29766323

RESUMEN

The nitric oxide (NO)-protein kinase G (PKG) pathway has been known for some time to be an important target for cardioprotection against ischaemia/reperfusion injury and heart failure. While many approaches for reducing infarct size in patients have failed in the past, the advent of novel drugs that modulate cGMP and its downstream targets shows very promising results in recent preclinical and clinical studies. Here, we review main aspects of the NO-PKG pathway in light of recent drug development and summarise potential cardioprotective strategies in which cGMP is the main player.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Insuficiencia Cardíaca/enzimología , Daño por Reperfusión Miocárdica/enzimología , Miocardio/enzimología , Animales , Fármacos Cardiovasculares/uso terapéutico , Activación Enzimática , Activadores de Enzimas/farmacología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/prevención & control , Humanos , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/patología , Óxido Nítrico/metabolismo , Transducción de Señal
15.
Nitric Oxide ; 77: 88-95, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29738821

RESUMEN

The NO/sGC/cGMP signaling cascade plays a pivotal role in regulation of cardiovascular, cardiopulmonary and cardiorenal diseases and impairment of this cascade results in severe pathologies. Therefore, pharmacological interventions, targeting this pathway are promising strategies for treating a variety of diseases. Nitrates, supplementing NO and, PDE5 inhibitors preventing cGMP degradation, are used for angina pectoris treatment and the treatment of pulmonary arterial hypertension (PAH), respectively. More recently, a new class of drugs which directly stimulate the sGC enzyme and trigger NO-independent cGMP production was introduced and termed sGC stimulators. In 2013, the first sGC stimulator, riociguat, was approved for the treatment of PAH and chronic thromboembolic pulmonary hypertension (CTEPH). Since cGMP targets multiple intracellular downstream targets, sGC stimulators have shown - beyond the well characterized vasodilatation - anti-fibrotic, anti-inflammatory and anti-proliferative effects. These additional modes of action might extend the therapeutic potential of this drug class substantially. This review summarizes the NO/sGC/cGMP signaling cascades, the discovery and the mode of action of sGC stimulators. Furthermore, the preclinical evidence and development of riociguat for the treatment of PAH and CTEPH is reviewed. Finally, a summary of the antifibrotic effects of sGC stimulators, especially the most recent finding for skin fibrosis are included which may indicate efficacy in fibrotic diseases like Systemic Sclerosis (SSc).


Asunto(s)
Activadores de Enzimas/farmacología , Hipertensión Pulmonar/tratamiento farmacológico , Pirazoles/farmacología , Pirimidinas/farmacología , Enfermedades Raras/tratamiento farmacológico , Esclerodermia Sistémica/tratamiento farmacológico , Guanilil Ciclasa Soluble/metabolismo , GMP Cíclico/metabolismo , Humanos , Hipertensión Pulmonar/metabolismo , Óxido Nítrico/metabolismo , Enfermedades Raras/metabolismo , Esclerodermia Sistémica/metabolismo
16.
Eur J Appl Physiol ; 118(1): 195-203, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29159668

RESUMEN

PURPOSE: Testing of investigational drugs in animal models is a critical step in drug development. Current models of pulmonary hypertension (PH) have limitations. The most relevant outcome parameters such as pulmonary artery pressure (PAP) are measured invasively which requires anesthesia of the animal. We developed a new canine PH model in which pulmonary vasodilators can be characterized in conscious dogs and lung selectivity can be assessed non-invasively. METHODS: Telemetry devices were implanted to measure relevant hemodynamic parameters in conscious dogs. A hypoxic chamber was constructed in which the animals were placed in a conscious state. By reducing the inspired oxygen fraction (FiO2) to 10%, a hypoxic pulmonary vasoconstriction was induced leading to PH. The PDE-5 inhibitor sildenafil, the current standard of care was compared to atrial natriuretic peptide (ANP). RESULTS: The new hypoxic chamber provided a stable hypoxic atmosphere during all experiments. The mean PAP under normoxic conditions was 15.8 ± 1.8 mmHg. Hypoxia caused a reliable increase in mean PAP (+ 12.2 ± 3.2 mmHg, p < 0.0001). Both, sildenafil (- 6.8 ± 4.4 mmHg) and ANP (- 6.4 ± 3.8 mmHg) significantly (p < 0.05) decreased PAP. Furthermore sildenafil and ANP showed similar effects on systemic hemodynamics. In subsequent studies, the in vitro effects and gene expression pattern of the two pathways were exemplified. CONCLUSIONS: By combining the hypoxic environment with the telemetric approach, we could successfully establish a new acute PH model. Sildenafil and ANP demonstrated equal effects regarding pulmonary selectivity. This non-invasive model could help to rapidly screen pulmonary vasodilators with decreased animal burden.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Hipertensión Pulmonar/tratamiento farmacológico , Arteria Pulmonar/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Factor Natriurético Atrial/farmacología , Factor Natriurético Atrial/uso terapéutico , Modelos Animales de Enfermedad , Perros , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/fisiopatología , Hipoxia/complicaciones , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Masculino , Arteria Pulmonar/fisiopatología , Citrato de Sildenafil/farmacología , Citrato de Sildenafil/uso terapéutico , Telemetría/métodos , Vasodilatadores/uso terapéutico , Vigilia
17.
Int J Mol Sci ; 19(6)2018 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-29890734

RESUMEN

Chronic Kidney Disease (CKD) is a highly prevalent disease with a substantial medical need for new and more efficacious treatments. The Nitric Oxide (NO), soluble guanylyl cyclase (sGC), cyclic guanosine monophosphate (cGMP) signaling cascade regulates various kidney functions. cGMP directly influences renal blood flow, renin secretion, glomerular function, and tubular exchange processes. Downregulation of NO/sGC/cGMP signaling results in severe kidney pathologies such as CKD. Therefore, treatment strategies aiming to maintain or increase cGMP might have beneficial effects for the treatment of progressive kidney diseases. Within this article, we review the NO/sGC/cGMP signaling cascade and its major pharmacological intervention sites. We specifically focus on the currently known effects of cGMP on kidney function parameters. Finally, we summarize the preclinical evidence for kidney protective effects of NO-donors, PDE inhibitors, sGC stimulators, and sGC activators.


Asunto(s)
Enfermedades Renales/patología , Riñón/patología , Óxido Nítrico/metabolismo , Transducción de Señal , Guanilil Ciclasa Soluble/metabolismo , Animales , GMP Cíclico/metabolismo , Humanos , Enfermedades Renales/terapia
18.
Mol Pharmacol ; 92(4): 375-388, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28874607

RESUMEN

Nitric oxide (NO) activates the NO-sensitive soluble guanylate cyclase (NO-GC, sGC) and triggers intracellular signaling pathways involving cGMP. For survival of cochlear hair cells and preservation of hearing, NO-mediated cascades have both protective and detrimental potential. Here we examine the cochlear function of mice lacking one of the two NO-sensitive guanylate cyclase isoforms [NO-GC1 knockout (KO) or NO-GC2 KO]. The deletion of NO-GC1 or NO-GC2 did not influence electromechanical outer hair cell (OHC) properties, as measured by distortion product otoacoustic emissions, neither before nor after noise exposure, nor were click- or noise-burst-evoked auditory brainstem response thresholds different from controls. Yet inner hair cell (IHC) ribbons and auditory nerve responses showed significantly less deterioration in NO-GC1 KO and NO-GC2 KO mice after noise exposure. Consistent with a selective role of NO-GC in IHCs, NO-GC ß1 mRNA was found in isolated IHCs but not in OHCs. Using transgenic mice expressing the fluorescence resonance energy transfer-based cGMP biosensor cGi500, NO-induced elevation of cGMP was detected in real-time in IHCs but not in OHCs. Pharmacologic long-term treatment with a NO-GC stimulator altered auditory nerve responses but did not affect OHC function and hearing thresholds. Interestingly, NO-GC stimulation exacerbated the loss of auditory nerve response in aged animals but attenuated the loss in younger animals. We propose NO-GC2 and, to some degree, NO-GC1 as targets for early pharmacologic prevention of auditory fiber loss (synaptopathy). Both isoforms provide selective benefits for hearing function by maintaining the functional integrity of auditory nerve fibers in early life rather than at old age.


Asunto(s)
Guanilato Ciclasa/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patología , Óxido Nítrico/metabolismo , Ruido/efectos adversos , Receptores de Superficie Celular/metabolismo , Animales , Femenino , Células Ciliadas Auditivas Internas/efectos de los fármacos , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Morfolinas/farmacología , Pirimidinas/farmacología , Ratas , Ratas Wistar , Receptores de Superficie Celular/agonistas , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología
19.
BJU Int ; 119(2): 325-332, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27763717

RESUMEN

OBJECTIVES: To evaluate the expression of the Rho/Rho-associated protein kinase (ROCK) pathway in the corpus cavernosum of patients with severe erectile dysfunction (ED) compared with healthy human corpus cavernosum, and to test the functional effects of two Rho kinase inhibitors (RKIs) on erectile tissue of patients with severe ED, which did not respond to phosphodiesterase type 5 inhibitors (PDE5Is). PATIENTS AND METHODS: Human corpus cavernosum samples were obtained after consent from men undergoing penile prosthesis implantation (n = 7 for organ bath experiments, n = 17 for quantitative PCR [qPCR]). Potent control subjects (n = 5) underwent penile needle biopsy. qPCR was performed for the expression of RhoA and ROCK subtypes 1 and 2. Immunohistochemistry staining against ROCK and α smooth muscle actin (αSMA) was performed on the corpus cavernosum of patients with ED. Tissue strips were precontracted with phenylephrine and incubated with 1 µm of the PDE5I vardenafil or with DMSO (control). Subsequently, increasing concentrations of the RKIs azaindole or Y-27632 were added, and relaxation of tissue was quantified. RESULTS: The expression of ROCK1 was unchanged (P > 0.05), while ROCK2 (P < 0.05) was significantly upregulated in patients with ED compared with controls. ROCK1 and ROCK2 protein colocalized with αSMA, confirming the presence of this kinase in cavernous smooth muscle cells and/or myofibroblasts. After incubation with DMSO, 10 µm azaindole and 10 µm Y-27632 relaxed precontracted tissues with 49.5 ± 7.42% (P = 0.1470 when compared with vehicle) and 85.9 ± 10.3% (P = 0.0016 when compared with vehicle), respectively. Additive effects on relaxation of human corpus cavernosum were seen after preincubation with 1 µm vardenafil. CONCLUSION: The RKI Y-27632 causes a significant relaxation of corpus cavernosum in tissue strips of patients with severe ED. The additive effect of vardenafil and Y-27632 shows that a combined inhibition of Rho-kinase and phosphodiesterase type 5 could be a promising orally administered treatment for severe ED.


Asunto(s)
Amidas/farmacología , Inhibidores Enzimáticos/farmacología , Disfunción Eréctil/tratamiento farmacológico , Pene/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Piridinas/farmacología , Diclorhidrato de Vardenafil/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Sinergismo Farmacológico , Humanos , Masculino , Persona de Mediana Edad , Insuficiencia del Tratamiento
20.
Gerontology ; 63(3): 216-227, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27784018

RESUMEN

Fibrotic diseases cause high rates of morbidity and mortality, and their incidence increases with age. Despite intense research and development efforts, effective and well-tolerated antifibrotic treatments are scarce. Transforming growth factor-ß signaling, which is widely considered the most important profibrotic factor, causes a pro-oxidant shift in redox homeostasis and a concomitant decrease in nitric oxide (NO) signaling. The NO/cyclic guanosine monophosphate (cGMP) signaling cascade plays a pivotal role in the regulation of cell and organ function in whole-body hemostasis. Increases in NO/cGMP can lead to relaxation of smooth muscle cells triggering vasorelaxation. In addition, there is consistent evidence from preclinical in vitro and in vivo models that increased cGMP also exerts antifibrotic effects. However, most of these findings are descriptive and the molecular pathways are still being investigated. Furthermore, in a variety of fibrotic diseases and also during the natural course of aging, NO/cGMP production is low, and current treatment approaches to increase cGMP levels might not be sufficient. The introduction of compounds that specifically target and stimulate soluble guanylate cyclase (sGC), the so called sGC stimulators and sGC activators, might be able to overcome these limitations and could be ideal tools for investigating antifibrotic mechanisms in vitro and in vivo as they may provide effective treatment strategies for fibrotic diseases. These drugs increase cGMP independently from NO via direct modulation of sGC activity, and have synergistic and additive effects to endogenous NO. This review article describes the NO/cGMP signaling pathway and its involvement in fibrotic remodeling. The classes of sGC modulator drugs and their mode of action are described. Finally, the preclinical in vitro and in vivo findings and antifibrotic effects of cGMP elevation via sGC modulation are reviewed. sGC stimulators and activators significantly attenuate tissue fibrosis in a variety of internal organs and in the skin. Moreover, these compounds seem to have multiple intervention sites and may reduce extracellular matrix formation, fibroblast proliferation, and myofibroblast activation. Thus, sGC stimulators and sGC activators may offer an efficacious and tolerable therapy for fibrotic diseases, and clinical trials are currently underway to assess the potential benefit for patients with systemic sclerosis.


Asunto(s)
Activadores de Enzimas/farmacología , Fibrosis/tratamiento farmacológico , Guanilil Ciclasa Soluble/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , GMP Cíclico/metabolismo , Activadores de Enzimas/química , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Óxido Nítrico/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA