RESUMEN
OBJECTIVE: The purpose of this study was to evaluate the success, consistency, and efficiency of a semiautomated lesion management application within a PACS in the analysis of metastatic lesions in serial CT examinations of cancer patients. MATERIALS AND METHODS: Two observers using baseline and follow-up CT data independently reviewed 93 target lesions (17 lung, five liver, 71 lymph node) in 50 patients with either metastatic bladder or prostate cancer. The observers measured the longest axis (or short axis for lymph nodes) of each lesion and made Response Evaluation Criteria in Solid Tumors (RECIST) determinations using manual and lesion management application methods. The times required for examination review, RECIST calculations, and data input were recorded. The Wilcoxon signed rank test was used to assess time differences, and Bland-Altman analysis was used to assess interobserver agreement within the manual and lesion management application methods. Percentage success rates were also reported. RESULTS: With the lesion management application, most lung and liver lesions were semiautomatically segmented. Comparison of the lesion management application and manual methods for all lesions showed a median time saving of 45% for observer 1 (p<0.05) and 28% for observer 2 (p=0.05) on follow-up scans versus 28% for observer 1 (p<0.05) and 9% for observer 2 (p=0.087) on baseline scans. Variability of measurements showed mean percentage change differences of only 8.9% for the lesion management application versus 26.4% for manual measurements. CONCLUSION: With the lesion management application method, most lung and liver lesions were successfully segmented semiautomatically; the results were more consistent between observers; and assessment of tumor size was faster than with the manual method.
Asunto(s)
Eficiencia , Metástasis de la Neoplasia/diagnóstico por imagen , Neoplasias/diagnóstico por imagen , Reconocimiento de Normas Patrones Automatizadas , Interpretación de Imagen Radiográfica Asistida por Computador/normas , Sistemas de Información Radiológica , Tomografía Computarizada por Rayos X , Anciano , Femenino , Humanos , Masculino , Neoplasias/terapia , Estudios RetrospectivosRESUMEN
GRB2 is an adaptor protein required for facilitating cytoplasmic signaling complexes from a wide array of binding partners. GRB2 has been reported to exist in either a monomeric or dimeric state in crystal and solution. GRB2 dimers are formed by the exchange of protein segments between domains, otherwise known as "domain-swapping". Swapping has been described between SH2 and C-terminal SH3 domains in the full-length structure of GRB2 (SH2/C-SH3 domain-swapped dimer), as well as between α-helixes in isolated GRB2 SH2 domains (SH2/SH2 domain-swapped dimer). Interestingly, SH2/SH2 domain-swapping has not been observed within the full-length protein, nor have the functional influences of this novel oligomeric conformation been explored. We herein generated a model of full-length GRB2 dimer with an SH2/SH2 domain-swapped conformation supported by in-line SEC-MALS-SAXS analyses. This conformation is consistent with the previously reported truncated GRB2 SH2/SH2 domain-swapped dimer but different from the previously reported, full-length SH2/C-terminal SH3 (C-SH3) domain-swapped dimer. Our model is also validated by several novel full-length GRB2 mutants that favor either a monomeric or a dimeric state through mutations within the SH2 domain that abrogate or promote SH2/SH2 domain-swapping. GRB2 knockdown and re-expression of selected monomeric and dimeric mutants in a T cell lymphoma cell line led to notable defects in clustering of the adaptor protein LAT and IL-2 release in response to TCR stimulation. These results mirrored similarly-impaired IL-2 release in GRB2-deficient cells. These studies show that a novel dimeric GRB2 conformation with domain-swapping between SH2 domains and monomer/dimer transitions are critical for GRB2 to facilitate early signaling complexes in human T cells.
Asunto(s)
Interleucina-2 , Dominios Homologos src , Humanos , Dimerización , Dispersión del Ángulo Pequeño , Linfocitos T , Difracción de Rayos X , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Polímeros , Proteína Adaptadora GRB2/genéticaRESUMEN
Glycerol Monolaurate (GML) is a naturally occurring fatty acid widely utilized in food, cosmetics, and homeopathic supplements. GML is a potent antimicrobial agent that targets a range of bacteria, fungi, and enveloped viruses but select findings suggest that GML also has immunomodulatory functions. In this study, we have mechanistically examined if GML affects the signaling and functional output of human primary T cells. We found that GML potently altered order and disorder dynamics in the plasma membrane that resulted in reduced formation of LAT, PLC-γ, and AKT microclusters. Altered membrane events induced selective inhibition of TCR-induced phosphorylation of regulatory P85 subunit of PI3K and AKT as well as abrogated calcium influx. Ultimately, GML treatment potently reduced TCR-induced production of IL-2, IFN-γ, TNF-α, and IL-10. Our data reveal that the widely used anti-microbial agent GML also alters the lipid dynamics of human T cells, leading to their defective signaling and function.
Asunto(s)
Lauratos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Monoglicéridos/farmacología , Transducción de Señal/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Antígenos CD28/antagonistas & inhibidores , Antígenos CD28/fisiología , Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Citocinas/biosíntesis , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolipasa C gamma/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Antígenos de Linfocitos T/antagonistas & inhibidores , Receptores de Antígenos de Linfocitos T/fisiología , Linfocitos T/metabolismoRESUMEN
Primary normal human bronchial/tracheal epithelial (NHBE) cells, derived from the distal-most aspect of the trachea at the bifurcation, have been used for a number of studies in respiratory disease research. Differences between the source tissue and the differentiated primary cells may impact infection studies based on this model. Therefore, we examined how well-differentiated NHBE cells compared with their source tissue, the human distal trachea, as well as the ramifications of these differences on influenza A viral pathogenesis research using this model. We employed a histological analysis including morphological measurements, electron microscopy, multi-label immunofluorescence confocal microscopy, lectin histochemistry, and microarray expression analysis to compare differentiated NHBEs to human distal tracheal epithelium. Pseudostratified epithelial height, cell type variety and distribution varied significantly. Electron microscopy confirmed differences in cellular attachment and paracellular junctions. Influenza receptor lectin histochemistry revealed that α2,3 sialic acids were rarely present on the apical aspect of the differentiated NHBE cells, but were present in low numbers in the distal trachea. We bound fluorochrome bioconjugated virus to respiratory tissue and NHBE cells and infected NHBE cells with human influenza A viruses. Both indicated that the pattern of infection progression in these cells correlated with autopsy studies of fatal cases from the 2009 pandemic.
Asunto(s)
Bronquios/citología , Células Epiteliales/citología , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana/virología , Tráquea/citología , Antígenos Virales/metabolismo , Bronquios/virología , Diferenciación Celular , Células Epiteliales/metabolismo , Células Epiteliales/virología , Femenino , Humanos , Pandemias , Receptores Virales/metabolismo , Tráquea/virologíaRESUMEN
Tissue autofluorescence frequently hampers visualization of immunofluorescent markers in formalin-fixed paraffin-embedded respiratory tissues. We assessed nine treatments reported to have efficacy in reducing autofluorescence in other tissue types. The three most efficacious were Eriochrome black T, Sudan black B and sodium borohydride, as measured using white light laser confocal Λ2 (multi-lambda) analysis. We also assessed the impact of steam antigen retrieval and serum application on human tracheal tissue autofluorescence. Functionally fitting this Λ2 data to 2-dimensional Gaussian surfaces revealed that steam antigen retrieval and serum application contribute minimally to autofluorescence and that the three treatments are disparately efficacious. Together, these studies provide a set of guidelines for diminishing autofluorescence in formalin-fixed paraffin-embedded human respiratory tissue. Additionally, these characterization techniques are transferable to similar questions in other tissue types, as demonstrated on frozen human liver tissue and paraffin-embedded mouse lung tissue fixed in different fixatives.
RESUMEN
Interleukin-17 (IL-17)-secreting T cells of the T helper 17 (TH17) lineage play a pathogenic role in multiple inflammatory and autoimmune conditions and thus represent a highly attractive target for therapeutic intervention. We report that inhibition of acetyl-CoA carboxylase 1 (ACC1) restrains the formation of human and mouse TH17 cells and promotes the development of anti-inflammatory Foxp3(+) regulatory T (Treg) cells. We show that TH17 cells, but not Treg cells, depend on ACC1-mediated de novo fatty acid synthesis and the underlying glycolytic-lipogenic metabolic pathway for their development. Although TH17 cells use this pathway to produce phospholipids for cellular membranes, Treg cells readily take up exogenous fatty acids for this purpose. Notably, pharmacologic inhibition or T cell-specific deletion of ACC1 not only blocks de novo fatty acid synthesis but also interferes with the metabolic flux of glucose-derived carbon via glycolysis and the tricarboxylic acid cycle. In vivo, treatment with the ACC-specific inhibitor soraphen A or T cell-specific deletion of ACC1 in mice attenuates TH17 cell-mediated autoimmune disease. Our results indicate fundamental differences between TH17 cells and Treg cells regarding their dependency on ACC1-mediated de novo fatty acid synthesis, which might be exploited as a new strategy for metabolic immune modulation of TH17 cell-mediated inflammatory diseases.
Asunto(s)
Linaje de la Célula , Ácidos Grasos/biosíntesis , Linfocitos T Reguladores/citología , Células Th17/citología , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Acetil-CoA Carboxilasa/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Inmunización , Lipogénesis/efectos de los fármacos , Macrólidos/química , Macrólidos/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Metaboloma/efectos de los fármacos , Ratones Endogámicos C57BL , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Células Th17/efectos de los fármacos , Células Th17/inmunologíaRESUMEN
The 1918 influenza pandemic caused over 40 million deaths worldwide, with 675,000 deaths in the United States alone. Studies in several experimental animal models showed that 1918 influenza virus infection resulted in severe lung pathology associated with dysregulated immune and cell death responses. To determine if reactive oxygen species produced by host inflammatory responses play a central role in promoting severity of lung pathology, we treated 1918 influenza virus-infected mice with the catalytic catalase/superoxide dismutase mimetic, salen-manganese complex EUK-207 beginning 3 days postinfection. Postexposure treatment of mice infected with a lethal dose of the 1918 influenza virus with EUK-207 resulted in significantly increased survival and reduced lung pathology without a reduction in viral titers. In vitro studies also showed that EUK-207 treatment did not affect 1918 influenza viral replication. Immunohistochemical analysis showed a reduction in the detection of the apoptosis marker cleaved caspase-3 and the oxidative stress marker 8-oxo-2'-deoxyguanosine in lungs of EUK-207-treated animals compared to vehicle controls. High-throughput sequencing and RNA expression microarray analysis revealed that treatment resulted in decreased expression of inflammatory response genes and increased lung metabolic and repair responses. These results directly demonstrate that 1918 influenza virus infection leads to an immunopathogenic immune response with excessive inflammatory and cell death responses that can be limited by treatment with the catalytic antioxidant EUK-207.
Asunto(s)
Depuradores de Radicales Libres/farmacología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Influenza Pandémica, 1918-1919 , Compuestos Organometálicos/farmacología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Especies Reactivas de Oxígeno/antagonistas & inhibidores , 8-Hidroxi-2'-Desoxicoguanosina , Animales , Biomarcadores/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Reparación del ADN , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Perros , Femenino , Expresión Génica , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/mortalidad , Inflamación/virología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/virología , Especies Reactivas de Oxígeno/metabolismo , Análisis de Supervivencia , Carga Viral , Replicación ViralRESUMEN
BACKGROUND: Obesity has been identified as an independent risk factor for severe or fatal infection with 2009 pandemic H1N1 influenza (2009 pH1N1), but was not previously recognized for previous pandemic or seasonal influenza infections. OBJECTIVES: Our aim was to evaluate the role of obesity as an independent risk factor for severity of infection with 2009 pH1N1, seasonal H1N1, or a pathogenic H1N1 influenza virus. METHODS: Diet-induced obese (DIO) and their non-obese, age-matched control counterparts were inoculated with a 2009 pH1N1, A/California/04/2009 (CA/09), current seasonal H1N1, A/NY/312/2001 (NY312), or highly pathogenic 1918-like H1N1, A/Iowa/Swine/1931 (Sw31), virus. RESULTS: Following inoculation with CA/09, DIO mice had higher mortality (80%) than control mice (0%) and lost more weight during infection. No effect of obesity on morbidity and mortality was observed during NY312 or Sw31 infection. Influenza antigen distribution in the alveolar regions of the lungs was more pronounced in DIO than control mice during CA/09 infection at 3 days post-inoculation (dpi), despite similar virus titers. During CA/09 infection, localized interferon-ß and proinflammatory cytokine protein responses in the lungs were significantly lower in DIO than control mice. Conversely, serum cytokine concentrations were elevated in DIO, but not control mice following infection with CA/09. The effect of obesity on differential immune responses was abrogated during NY312 or Sw31 infection. CONCLUSIONS: Together, these data support epidemiologic reports that obesity may be a risk factor for severe 2009 pandemic H1N1 influenza infection, but the role of obesity in seasonal or highly virulent pandemic influenza infection remains unclear.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/epidemiología , Gripe Humana/mortalidad , Obesidad/complicaciones , Animales , Modelos Animales de Enfermedad , Humanos , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/complicaciones , Gripe Humana/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Pandemias , Factores de RiesgoRESUMEN
UNLABELLED: Secondary bacterial infections increase disease severity of influenza virus infections and contribute greatly to increased morbidity and mortality during pandemics. To study secondary bacterial infection following influenza virus infection, mice were inoculated with sublethal doses of 2009 seasonal H1N1 virus (NIH50) or pandemic H1N1 virus (Mex09) followed by inoculation with Streptococcus pneumoniae 48 h later. Disease was characterized by assessment of weight loss and survival, titration of virus and bacteria by quantitative reverse transcription-PCR (qRT-PCR), histopathology, expression microarray, and immunohistochemistry. Mice inoculated with virus alone showed 100% survival for all groups. Mice inoculated with Mex09 plus S. pneumoniae showed severe weight loss and 100% mortality with severe alveolitis, denuded bronchiolar epithelium, and widespread expression of apoptosis marker cleaved caspase 3. In contrast, mice inoculated with NIH50 plus S. pneumoniae showed increased weight loss, 100% survival, and slightly enhanced lung pathology. Mex09-S. pneumoniae coinfection also resulted in increased S. pneumoniae replication in lung and bacteremia late in infection. Global gene expression profiling revealed that Mex09-S. pneumoniae coinfection did not induce significantly more severe inflammatory responses but featured significant loss of epithelial cell reproliferation and repair responses. Histopathological examination for cell proliferation marker MCM7 showed significant staining of airway epithelial cells in all groups except Mex09-S. pneumoniae-infected mice. This study demonstrates that secondary bacterial infection during 2009 H1N1 pandemic virus infection resulted in more severe disease and loss of lung repair responses than did seasonal influenza viral and bacterial coinfection. Moreover, this study provides novel insights into influenza virus and bacterial coinfection by showing correlation of lethal outcome with loss of airway basal epithelial cells and associated lung repair responses. IMPORTANCE: Secondary bacterial pneumonias lead to increased disease severity and have resulted in a significant percentage of deaths during influenza pandemics. To understand the biological basis for the interaction of bacterial and viral infections, mice were infected with sublethal doses of 2009 seasonal H1N1 and pandemic H1N1 viruses followed by infection with Streptococcus pneumoniae 48 h later. Only infection with 2009 pandemic H1N1 virus and S. pneumoniae resulted in severe disease with a 100% fatality rate. Analysis of the host response to infection during lethal coinfection showed a significant loss of responses associated with lung repair that was not observed in any of the other experimental groups. This group of mice also showed enhanced bacterial replication in the lung. This study reveals that the extent of lung damage during viral infection influences the severity of secondary bacterial infections and may help explain some differences in mortality during influenza pandemics.
Asunto(s)
Coinfección/mortalidad , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/mortalidad , Pulmón/fisiopatología , Infecciones Neumocócicas/mortalidad , Streptococcus pneumoniae/fisiología , Animales , Coinfección/epidemiología , Femenino , Regulación de la Expresión Génica , Humanos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/microbiología , Gripe Humana/fisiopatología , Gripe Humana/virología , Pulmón/microbiología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Pandemias , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/fisiopatología , Infecciones Neumocócicas/virología , Streptococcus pneumoniae/patogenicidad , Virulencia , Pérdida de PesoRESUMEN
Cationic antimicrobial peptides are an evolutionarily ancient and essential element of innate immunity in higher organisms. The precise mechanism by which these peptides exert their antimicrobial activity on bacteria is not well understood. Decapeptides based on the C-terminus of human beta-defensin-3 were designed and evaluated to study the role of charge in defining the antimicrobial activity and selectivity of these peptides against Escherichia coli. Acetylated derivatives of these peptides were prepared in order to further evaluate how positively charged primary amines contribute to potency in these small antimicrobial peptides. These peptides enabled us to explore the relationship between net charge, charge distribution and antimicrobial activity. While the results indicate that net charge is a major factor in antimicrobial activity in these peptides, the actual relationship between charge and potency appears to be more complex.