Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 236(4): 1545-1557, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35999713

RESUMEN

The endosperm, a tissue that nourishes the embryo in the seeds of flowering plants, is often disrupted in inviable hybrid seeds of closely related species. A key question is whether parental conflict is a major driver of this common form of reproductive isolation. Here, we performed reciprocal crosses between pairs of three monkeyflower species (Mimulus caespitosa, Mimulus tilingii, and Mimulus guttatus). The severity of hybrid seed inviability varies among these crosses, which we inferred to be due to species divergence in effective ploidy. By performing a time series experiment of seed development, we discovered parent-of-origin phenotypes that provide strong evidence for parental conflict in shaping endosperm evolution. We found that the chalazal haustorium, a tissue within the endosperm that is found at the maternal-filial boundary, shows pronounced differences between reciprocal hybrid seeds formed from Mimulus species that differ in effective ploidy. These parent-of-origin effects suggest that the chalazal haustorium might act as a mediator of parental conflict, potentially by controlling sucrose movement from the maternal parent into the endosperm. Our study suggests that parental conflict in the endosperm may function as a driver of speciation by targeting regions and developmental stages critical for resource allocation and thus proper seed development.


Asunto(s)
Mimulus , Mimulus/genética , Endospermo/genética , Semillas/genética , Aislamiento Reproductivo , Sacarosa , Hibridación Genética
2.
Evolution ; 75(3): 600-613, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33044006

RESUMEN

Species are often defined by their ability to interbreed (i.e., Biological Species Concept), but determining how and why reproductive isolation arises between new species can be challenging. In the Mimulus tilingii species complex, three species (M. caespitosa, M. minor, and M. tilingii) are largely allopatric and grow exclusively at high elevations (>2000 m). The extent to which geographic separation has shaped patterns of divergence among the species is not well understood. In this study, we determined that the three species are morphologically and genetically distinct, yet recently diverged. Additionally, we performed reciprocal crosses within and between the species and identified several strong postzygotic reproductive barriers, including hybrid seed inviability, F1 hybrid necrosis, and F1 hybrid male and female sterility. In this study, such postzygotic barriers are so strong that a cross between any species pair in the M. tilingii complex would cause nearly complete reproductive isolation. We consider how geographical and topographical patterns may have facilitated the evolution of several postzygotic barriers and contributed to speciation of closely related members within the M. tilingii species complex.


Asunto(s)
Especiación Genética , Mimulus/genética , Aislamiento Reproductivo , Evolución Biológica , Cruzamientos Genéticos , Hibridación Genética , Mimulus/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA