Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 66(1): e0079421, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34662196

RESUMEN

The apicomplexan parasite Toxoplasma gondii is the causative agent of toxoplasmosis, a globally distributed infection with severe clinical consequences for immunocompromised individuals and developing fetuses. There are few available treatments, and these are associated with potentially severe adverse effects. Marinopyrrole A, a compound discovered in a marine Streptomyces species, has previously been found to exhibit potent antimicrobial activity, prompting our interest in exploring efficacy against Toxoplasma gondii. We found that marinopyrrole A was a highly potent anti-Toxoplasma molecule, with an in vitro 50% maximal inhibitory concentration (IC50) of 0.31 µM, corresponding to a higher potency than that of the current standard of care (pyrimethamine); however, addition of 20% serum led to abrogation of potency, and toxicity to human cell lines was observed. Yet, application of marinopyrrole A to an in vivo lethal acute infection model facilitated significantly enhanced survival at doses of 5, 10, and 20 mg/kg. We then tested a series of marinopyrrole A analogs (RL002, RL003, and RL125) and demonstrated significantly increased potency in vitro, with IC50 values ranging from 0.09 to 0.17 µM (3.6- to 6.8-fold increase relative to pyrimethamine). No detectable cytotoxicity was observed up to 50 µM in human foreskin fibroblasts, with cytotoxicity in HepG2 cells ranging from ∼28 to 50 µM, corresponding to >200-fold selectivity for parasites over host cells. All analogs additionally showed reduced sensitivity to serum. Further, RL003 potently inhibited in vitro-generated bradyzoites at 0.245 µM. Taken together, these data support further development of marinopyrrole A analogs as promising anti-Toxoplasma molecules to further combat this prevalent infection.


Asunto(s)
Antiprotozoarios , Toxoplasma , Toxoplasmosis , Antiprotozoarios/uso terapéutico , Humanos , Pirroles/farmacología , Pirroles/uso terapéutico , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/parasitología
2.
Bioorg Med Chem Lett ; 30(1): 126778, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31706668

RESUMEN

Pyridyl benzamide 2 is a potent inhibitor of Trypanosoma cruzi, but not other protozoan parasites, and had a selectivity-index of ≥10. The initial structure-activity relationship (SAR) indicates that benzamide and sulfonamide functional groups, and N-methylpiperazine and sterically unhindered 3-pyridyl substructures are required for high activity against T. cruzi. Compound 2 and its active analogs had low to moderate metabolic stabilities in human and mouse liver microsomes.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Tripanocidas/uso terapéutico , Trypanosoma cruzi/efectos de los fármacos , Animales , Humanos , Relación Estructura-Actividad , Tripanocidas/farmacología
3.
Bioorg Med Chem Lett ; 28(3): 244-248, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29317164

RESUMEN

N,N'-Diaryl ureas have recently emerged as a new antischistosomal chemotype. We now describe physicochemical profiling, in vitro ADME, plasma exposure, and ex vivo and in vivo activities against Schistosoma mansoni for twenty new N,N'-diaryl ureas designed primarily to increase aqueous solubility, but also to maximize structural diversity. Replacement of one of the 4-fluoro-3-trifluoromethylphenyl substructures of lead N,N'-diaryl urea 1 with azaheterocycles and benzoic acids, benzamides, or benzonitriles decreased lipophilicity, and in most cases, increased aqueous solubility. There was no clear relationship between lipophilicity and metabolic stability, although all compounds with 3-trifluoromethyl-4-pyridyl substructures were metabolically stable. N,N'-diaryl ureas containing 4-fluoro-3-trifluoromethylphenyl, 3-trifluoromethyl-4-pyridyl, 2,2-difluorobenzodioxole, or 4-benzonitrile substructures had high activity against ex vivo S. mansoni and relatively low cytotoxicity. N,N-diaryl ureas with 3-trifluoromethyl-4-pyridyl and 2,2-difluorobenzodioxole substructures had the highest exposures whereas those with 4-fluoro-3-trifluoromethylphenyl substructures had the best in vivo antischistosomal activities. There was no direct correlation between compound exposure and in vivo activity.


Asunto(s)
Compuestos de Fenilurea/farmacología , Esquistosomicidas/farmacología , Animales , Línea Celular , Humanos , Masculino , Ratones , Microsomas Hepáticos/metabolismo , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Compuestos de Fenilurea/síntesis química , Compuestos de Fenilurea/química , Compuestos de Fenilurea/toxicidad , Schistosoma mansoni/efectos de los fármacos , Esquistosomicidas/síntesis química , Esquistosomicidas/química , Esquistosomicidas/toxicidad , Solubilidad , Relación Estructura-Actividad
4.
Microbiol Resour Announc ; 13(7): e0038424, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38847506

RESUMEN

We provide the complete genome sequence for a novel Pseudomonas fluorescens bacteriophage named UNO-G1W1. This phage was isolated from a single ice cover sampling. The genome was sequenced on the Nanopore MinION, generated with the direct terminal repeat-phage-pipeline and polished with Illumina short reads. Sequence identity classifies the phage as an otagovirus.

5.
ACS Infect Dis ; 7(6): 1578-1583, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33971090

RESUMEN

We now describe the physicochemical profiling, in vitro ADME, and antiparasitic activity of eight N,N'-diarylureas to assess their potential as a broad-spectrum antiprotozoal chemotype. Chromatographic LogD7.4 values ranged from 2.5 to 4.5; kinetic aq. solubilities were ≤6.3 µg/mL, and plasma protein binding ranged from 95 to 99%. All of the compounds had low intrinsic clearance values in human, but not mouse, liver microsomes. Although no N,N'-diarylurea had submicromolar potency against Trypanosoma cruzi, two had submicromolar potencies against Toxoplasma gondii and Trypanosoma brucei rhodesiense, and five had submicromolar potencies against Leishmania donovani. Plasmodium falciparum appeared to be the most susceptible to growth inhibition by this compound series. Most of the N,N'-diarylureas had antiprotozoal selectivities ≥10. One N,N'-diarylurea had demonstrable activity in mouse models of malaria and toxoplasmosis.


Asunto(s)
Antiprotozoarios , Leishmania donovani , Trypanosoma cruzi , Animales , Antiprotozoarios/farmacología , Ratones , Trypanosoma brucei rhodesiense , Urea
6.
ACS Infect Dis ; 5(6): 917-931, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-30832472

RESUMEN

Mosquito-borne arboviral diseases such as Zika, dengue fever, and chikungunya are transmitted to humans by infected adult female Aedes aegypti mosquitoes and affect a large portion of the world's population. The Kir1 channel in Ae. aegypti ( AeKir1) is an important ion channel in the functioning of mosquito Malpighian (renal) tubules and one that can be manipulated in order to disrupt excretory functions in mosquitoes. We have previously reported the discovery of various scaffolds that are active against the AeKir1 channel. Herein we report the synthesis and biological characterization of a new 2-nitro-5-(4-(phenylsulfonyl) piperazin-1-yl)- N-(pyridin-4-ylmethyl)anilines scaffold as inhibitors of AeKir1. This new scaffold is more potent in vitro compared to the previously reported scaffolds, and the molecules kill mosquito larvae.


Asunto(s)
Aedes/efectos de los fármacos , Compuestos de Anilina/síntesis química , Compuestos de Anilina/farmacología , Proteínas de Insectos/antagonistas & inhibidores , Piperazinas/síntesis química , Piperazinas/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Animales , Femenino , Ensayos Analíticos de Alto Rendimiento , Larva/efectos de los fármacos , Sulfonamidas/química
7.
J Genomics ; 4: 29-41, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27672404

RESUMEN

Trichomycterus areolatus is an endemic species of pencil catfish that inhabits the riffles and rapids of many freshwater ecosystems of Chile. Despite its unique adaptation to Chile's high gradient watersheds and therefore potential application in the investigation of ecosystem integrity and environmental contamination, relatively little is known regarding the molecular biology of this environmental sentinel. Here, we detail the assembly of the Trichomycterus areolatus transcriptome, a molecular resource for the study of this organism and its molecular response to the environment. RNA-Seq reads were obtained by next-generation sequencing with an Illumina® platform and processed using PRINSEQ. The transcriptome assembly was performed using TRINITY assembler. Transcriptome validation was performed by functional characterization with KOG, KEGG, and GO analyses. Additionally, differential expression analysis highlights sex-specific expression patterns, and a list of endocrine and oxidative stress related transcripts are included.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA