Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Odontology ; 109(1): 210-221, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32342240

RESUMEN

The aim was to evaluate the interfacial characteristics of Biodentine, CEM Cement, and ProRoot MTA when restored with different final restorative materials after different time intervals. Biodentine, CEM Cement and ProRoot MTA were layered with amalgam, composite resin or light cure glass ionomer cement. Layering was done either immediately, 24 or 72 h after cement placement. The interface of cements with restorative materials was characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) after separation. Vickers surface microhardness test was also performed on the interface. Statistical analysis included two-way Anova, Dunnett T3, and Tukey HSD. The significance level was set at P < 0.05. The highest microhardness values were seen when restorative materials were layered after 24 h in the case of Biodentine, and after 72 h in the case of CEM Cement and ProRoot MTA. In ProRoot MTA no significant difference was seen in the microhardness when layered with different restorative materials regardless of the time of layering. In immediate layering, Biodentine exhibited the highest microhardness values. Both immediate and delayed layering resulted in element transfer between calcium silicate cements (CSCs) and restorative materials. Deposition and depletion of element occurs subsequent to layering of restorative materials on CSCs. When immediate layering is necessary, Biodentine may be a better option compared to other CSCs evaluated.


Asunto(s)
Calcio , Cemento de Silicato , Compuestos de Calcio , Combinación de Medicamentos , Cementos de Ionómero Vítreo , Ensayo de Materiales , Silicatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA