Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(9): 1985-2001.e19, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37075754

RESUMEN

Aneuploidy, the presence of chromosome gains or losses, is a hallmark of cancer. Here, we describe KaryoCreate (karyotype CRISPR-engineered aneuploidy technology), a system that enables the generation of chromosome-specific aneuploidies by co-expression of an sgRNA targeting chromosome-specific CENPA-binding ɑ-satellite repeats together with dCas9 fused to mutant KNL1. We design unique and highly specific sgRNAs for 19 of the 24 chromosomes. Expression of these constructs leads to missegregation and induction of gains or losses of the targeted chromosome in cellular progeny, with an average efficiency of 8% for gains and 12% for losses (up to 20%) validated across 10 chromosomes. Using KaryoCreate in colon epithelial cells, we show that chromosome 18q loss, frequent in gastrointestinal cancers, promotes resistance to TGF-ß, likely due to synergistic hemizygous deletion of multiple genes. Altogether, we describe an innovative technology to create and study chromosome missegregation and aneuploidy in the context of cancer and beyond.


Asunto(s)
Centrómero , Técnicas Genéticas , Humanos , Aneuploidia , Centrómero/genética , Deleción Cromosómica , Neoplasias/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas
2.
Nat Rev Mol Cell Biol ; 16(8): 473-85, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26204159

RESUMEN

Dividing cells that experience chromosome mis-segregation generate aneuploid daughter cells, which contain an incorrect number of chromosomes. Although aneuploidy interferes with the proliferation of untransformed cells, it is also, paradoxically, a hallmark of cancer, a disease defined by increased proliferative potential. These contradictory effects are also observed in mouse models of chromosome instability (CIN). CIN can inhibit and promote tumorigenesis. Recent work has provided insights into the cellular consequences of CIN and aneuploidy. Chromosome mis-segregation per se can alter the genome in many more ways than just causing the gain or loss of chromosomes. The short- and long-term effects of aneuploidy are caused by gene-specific effects and a stereotypic aneuploidy stress response. Importantly, these recent findings provide insights into the role of aneuploidy in tumorigenesis.


Asunto(s)
Aneuploidia , Segregación Cromosómica , Cariotipo Anormal , Animales , Carcinogénesis/genética , Daño del ADN , Dosificación de Gen , Humanos , Neoplasias/genética , Especificidad de Órganos
3.
Nature ; 590(7846): 486-491, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33505028

RESUMEN

Selective targeting of aneuploid cells is an attractive strategy for cancer treatment1. However, it is unclear whether aneuploidy generates any clinically relevant vulnerabilities in cancer cells. Here we mapped the aneuploidy landscapes of about 1,000 human cancer cell lines, and analysed genetic and chemical perturbation screens2-9 to identify cellular vulnerabilities associated with aneuploidy. We found that aneuploid cancer cells show increased sensitivity to genetic perturbation of core components of the spindle assembly checkpoint (SAC), which ensures the proper segregation of chromosomes during mitosis10. Unexpectedly, we also found that aneuploid cancer cells were less sensitive than diploid cells to short-term exposure to multiple SAC inhibitors. Indeed, aneuploid cancer cells became increasingly sensitive to inhibition of SAC over time. Aneuploid cells exhibited aberrant spindle geometry and dynamics, and kept dividing when the SAC was inhibited, resulting in the accumulation of mitotic defects, and in unstable and less-fit karyotypes. Therefore, although aneuploid cancer cells could overcome inhibition of SAC more readily than diploid cells, their long-term proliferation was jeopardized. We identified a specific mitotic kinesin, KIF18A, whose activity was perturbed in aneuploid cancer cells. Aneuploid cancer cells were particularly vulnerable to depletion of KIF18A, and KIF18A overexpression restored their response to SAC inhibition. Our results identify a therapeutically relevant, synthetic lethal interaction between aneuploidy and the SAC.


Asunto(s)
Aneuploidia , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Neoplasias/patología , Cariotipo Anormal/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Segregación Cromosómica/efectos de los fármacos , Diploidia , Genes Letales , Humanos , Cinesinas/deficiencia , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias/genética , Huso Acromático/efectos de los fármacos , Mutaciones Letales Sintéticas/efectos de los fármacos , Mutaciones Letales Sintéticas/genética , Factores de Tiempo
4.
Genes Dev ; 33(15-16): 1031-1047, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31196865

RESUMEN

Aneuploidy, a condition characterized by chromosome gains and losses, causes reduced fitness and numerous cellular stresses, including increased protein aggregation. Here, we identify protein complex stoichiometry imbalances as a major cause of protein aggregation in aneuploid cells. Subunits of protein complexes encoded on excess chromosomes aggregate in aneuploid cells, which is suppressed when expression of other subunits is coordinately altered. We further show that excess subunits are either degraded or aggregate and that protein aggregation is nearly as effective as protein degradation at lowering levels of excess proteins. Our study explains why proteotoxic stress is a universal feature of the aneuploid state and reveals protein aggregation as a form of dosage compensation to cope with disproportionate expression of protein complex subunits.


Asunto(s)
Aneuploidia , Citosol/metabolismo , Compensación de Dosificación (Genética)/fisiología , Agregado de Proteínas/genética , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Agregación Patológica de Proteínas , Subunidades de Proteína/metabolismo , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Genes Dev ; 30(20): 2259-2271, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27807036

RESUMEN

Aneuploidy-or an unbalanced karyotype in which whole chromosomes are gained or lost-causes reduced fitness at both the cellular and organismal levels but is also a hallmark of human cancers. Aneuploidy causes a variety of cellular stresses, including genomic instability, proteotoxic and oxidative stresses, and impaired protein trafficking. The deubiquitinase Ubp3, which was identified by a genome-wide screen for gene deletions that impair the fitness of aneuploid yeast, is a key regulator of aneuploid cell homeostasis. We show that deletion of UBP3 exacerbates both karyotype-specific phenotypes and global stresses of aneuploid cells, including oxidative and proteotoxic stress. Indeed, Ubp3 is essential for proper proteasome function in euploid cells, and deletion of this deubiquitinase leads to further proteasome-mediated proteotoxicity in aneuploid yeast. Notably, the importance of UBP3 in aneuploid cells is conserved. Depletion of the human homolog of UBP3, USP10, is detrimental to the fitness of human cells upon chromosome missegregation, and this fitness defect is accompanied by autophagy inhibition. We thus used a genome-wide screen in yeast to identify a guardian of aneuploid cell fitness conserved across species. We propose that interfering with Ubp3/USP10 function could be a productive avenue in the development of novel cancer therapeutics.


Asunto(s)
Aneuploidia , Endopeptidasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ubiquitina Tiolesterasa/metabolismo , Animales , Autofagia/genética , Línea Celular , Proliferación Celular/genética , Endopeptidasas/genética , Eliminación de Gen , Humanos , Ratones , Complejo de la Endopetidasa Proteasomal/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Ubiquitina Tiolesterasa/genética
6.
EMBO Rep ; 22(8): e52032, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34105235

RESUMEN

The immune system plays a major role in the protection against cancer. Identifying and characterizing the pathways mediating this immune surveillance are thus critical for understanding how cancer cells are recognized and eliminated. Aneuploidy is a hallmark of cancer, and we previously found that untransformed cells that had undergone senescence due to highly abnormal karyotypes are eliminated by natural killer (NK) cells in vitro. However, the mechanisms underlying this process remained elusive. Here, using an in vitro NK cell killing system, we show that non-cell-autonomous mechanisms in aneuploid cells predominantly mediate their clearance by NK cells. Our data indicate that in untransformed aneuploid cells, NF-κB signaling upregulation is central to elicit this immune response. Inactivating NF-κB abolishes NK cell-mediated clearance of untransformed aneuploid cells. In cancer cell lines, NF-κB upregulation also correlates with the degree of aneuploidy. However, such upregulation in cancer cells is not sufficient to trigger NK cell-mediated clearance, suggesting that additional mechanisms might be at play during cancer evolution to counteract NF-κB-mediated immunogenicity.


Asunto(s)
Células Asesinas Naturales , FN-kappa B , Aneuploidia , Senescencia Celular/genética , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal
7.
Cell ; 133(3): 427-39, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18455984

RESUMEN

Kinetochores are proteinaceous assemblies that mediate the interaction of chromosomes with the mitotic spindle. The 180 kDa Ndc80 complex is a direct point of contact between kinetochores and microtubules. Its four subunits contain coiled coils and form an elongated rod structure with functional globular domains at either end. We crystallized an engineered "bonsai" Ndc80 complex containing a shortened rod domain but retaining the globular domains required for kinetochore localization and microtubule binding. The structure reveals a microtubule-binding interface containing a pair of tightly interacting calponin-homology (CH) domains with a previously unknown arrangement. The interaction with microtubules is cooperative and predominantly electrostatic. It involves positive charges in the CH domains and in the N-terminal tail of the Ndc80 subunit and negative charges in tubulin C-terminal tails and is regulated by the Aurora B kinase. We discuss our results with reference to current models of kinetochore-microtubule attachment and centromere organization.


Asunto(s)
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Proteínas del Citoesqueleto , Humanos , Espectrometría de Masas , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Ingeniería de Proteínas , Huso Acromático/metabolismo
8.
Genes Dev ; 29(19): 2010-21, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26404941

RESUMEN

An unbalanced karyotype, a condition known as aneuploidy, has a profound impact on cellular physiology and is a hallmark of cancer. Aneuploid cells experience a number of stresses that are caused by aneuploidy-induced proteomic changes. How the aneuploidy-associated stresses affect cells and whether cells respond to them are only beginning to be understood. Here we show that autophagosomal cargo such as protein aggregates accumulate within lysosomes in aneuploid cells. This causes a lysosomal stress response. Aneuploid cells activate the transcription factor TFEB, a master regulator of autophagic and lysosomal gene expression, thereby increasing the expression of genes needed for autophagy-mediated protein degradation. Accumulation of autophagic cargo within the lysosome and activation of TFEB-responsive genes are also observed in cells in which proteasome function is inhibited, suggesting that proteotoxic stress causes TFEB activation. Our results reveal a TFEB-mediated lysosomal stress response as a universal feature of the aneuploid state.


Asunto(s)
Aneuploidia , Autofagia/genética , Lisosomas/patología , Estrés Fisiológico/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Línea Celular , Regulación de la Expresión Génica , Humanos , Complejo de la Endopetidasa Proteasomal , Agregado de Proteínas/fisiología , Pliegue de Proteína , Proteolisis
9.
Chromosome Res ; 32(1): 4, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38416208
10.
Mol Cell ; 44(5): 710-20, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22152475

RESUMEN

The spindle assembly checkpoint (SAC) restricts mitotic exit to cells that have completed chromosome-microtubule attachment. Cdc20 is a bifunctional protein. In complex with SAC proteins Mad2, BubR1, and Bub3, Cdc20 forms the mitotic checkpoint complex (MCC), which binds the anaphase-promoting complex (APC/C) and inhibits its mitotic exit-promoting activity. When devoid of SAC proteins, Cdc20 serves as an APC/C coactivator and promotes mitotic exit. During mitotic arrest, Cdc20 is continuously degraded via ubiquitin-dependent proteolysis and resynthesized. It is believed that this cycle keeps the levels of Cdc20 below a threshold above which Cdc20 would promote mitotic exit. We report that p31(comet), a checkpoint antagonist, is necessary for mitotic destabilization of Cdc20. p31(comet) depletion stabilizes the MCC, super-inhibits the APC/C, and delays mitotic exit, indicating that Cdc20 proteolysis in prometaphase opposes the checkpoint. Our studies reveal a homeostatic network in which checkpoint-sustaining and -repressing forces oppose each other during mitotic arrest and suggest ways for enhancing the sensitivity of cancer cells to antitubulin chemotherapeutics.


Asunto(s)
Homeostasis , Mitosis , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Homeostasis/efectos de los fármacos , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Mitosis/efectos de los fármacos , Nocodazol/farmacología , Proteínas Nucleares/metabolismo , Prometafase/efectos de los fármacos , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
11.
Nat Chem Biol ; 17(12): 1217-1218, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34608294
12.
EMBO J ; 30(8): 1508-19, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21407176

RESUMEN

Fidelity of chromosome segregation is ensured by a tension-dependent error correction system that prevents stabilization of incorrect chromosome-microtubule attachments. Unattached or incorrectly attached chromosomes also activate the spindle assembly checkpoint, thus delaying mitotic exit until all chromosomes are bioriented. The Aurora B kinase is widely recognized as a component of error correction. Conversely, its role in the checkpoint is controversial. Here, we report an analysis of the role of Aurora B in the spindle checkpoint under conditions believed to uncouple the effects of Aurora B inhibition on the checkpoint from those on error correction. Partial inhibition of several checkpoint and kinetochore components, including Mps1 and Ndc80, strongly synergizes with inhibition of Aurora B activity and dramatically affects the ability of cells to arrest in mitosis in the presence of spindle poisons. Thus, Aurora B might contribute to spindle checkpoint signalling independently of error correction. Our results support a model in which Aurora B is at the apex of a signalling pyramid whose sensory apparatus promotes the concomitant activation of error correction and checkpoint signalling pathways.


Asunto(s)
Cinetocoros/fisiología , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Huso Acromático/fisiología , Aurora Quinasa B , Aurora Quinasas , Segregación Cromosómica , Inhibidores Enzimáticos/farmacología , Células HeLa , Humanos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética
13.
Methods Cell Biol ; 182: 21-33, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38359978

RESUMEN

Aneuploidy is a condition in which cells have an abnormal number of chromosomes that is not a multiple of the haploid complement. It is known that aneuploidy has detrimental consequences on cell physiology, such as genome instability, metabolic and proteotoxic stress and decreased cellular fitness. Importantly, aneuploidy is a hallmark of tumors and it is associated with resistance to chemotherapeutic agents and poor clinical outcome. To shed light into how aneuploidy contributes to chemoresistance, we induced chromosome mis-segregation in human cancer cell lines, then treated them with several chemotherapeutic agents and evaluated the emergence of chemoresistance. By doing so, we found that elevation of chromosome mis-segregation promotes resistance to chemotherapeutic agents through the expansion of aneuploid karyotypes and subsequent selection of specific aneuploidies essential for cellular viability under those stressful conditions. Here, we describe a method to generate aneuploid cell populations and to evaluate their resistance to anti-cancer agents. This protocol has been already successfully employed and can be further utilized to accelerate the exploration of the role of aneuploidy in chemoresistance.


Asunto(s)
Aneuploidia , Neoplasias , Humanos , Cariotipo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Segregación Cromosómica
14.
Cancer Discov ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39247952

RESUMEN

Aneuploidy results in a stoichiometric imbalance of protein complexes that jeopardizes cellular fitness. Aneuploid cells thus need to compensate for the imbalanced DNA levels by regulating their RNA and protein levels, but the underlying molecular mechanisms remain unknown. Here, we dissected multiple diploid vs. aneuploid cell models. We found that aneuploid cells cope with transcriptional burden by increasing several RNA degradation pathways, and are consequently more sensitive to the perturbation of RNA degradation. At the protein level, aneuploid cells mitigate proteotoxic stress by reducing protein translation and increasing protein degradation, rendering them more sensitive to proteasome inhibition. These findings were recapitulated across hundreds of human cancer cell lines and primary tumors, and aneuploidy levels were significantly associated with the response of multiple myeloma patients to proteasome inhibitors. Aneuploid cells are therefore preferentially dependent on several key nodes along the gene expression process, creating clinically-actionable vulnerabilities in aneuploid cells.

15.
Science ; 385(6712): eadj7446, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39208097

RESUMEN

Chromosomal instability (CIN) generates micronuclei-aberrant extranuclear structures that catalyze the acquisition of complex chromosomal rearrangements present in cancer. Micronuclei are characterized by persistent DNA damage and catastrophic nuclear envelope collapse, which exposes DNA to the cytoplasm. We found that the autophagic receptor p62/SQSTM1 modulates micronuclear stability, influencing chromosome fragmentation and rearrangements. Mechanistically, proximity of micronuclei to mitochondria led to oxidation-driven homo-oligomerization of p62, limiting endosomal sorting complex required for transport (ESCRT)-dependent micronuclear envelope repair by triggering autophagic degradation. We also found that p62 levels correlate with increased chromothripsis across human cancer cell lines and with increased CIN in colorectal tumors. Thus, p62 acts as a regulator of micronuclei and may serve as a prognostic marker for tumors with high CIN.


Asunto(s)
Autofagia , Inestabilidad Cromosómica , Cromotripsis , Neoplasias Colorrectales , Micronúcleos con Defecto Cromosómico , Proteína Sequestosoma-1 , Humanos , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Línea Celular Tumoral , Daño del ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Membrana Nuclear/metabolismo
16.
Nat Commun ; 15(1): 7772, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251587

RESUMEN

Aneuploidy is a hallmark of human cancer, yet the molecular mechanisms to cope with aneuploidy-induced cellular stresses remain largely unknown. Here, we induce chromosome mis-segregation in non-transformed RPE1-hTERT cells and derive multiple stable clones with various degrees of aneuploidy. We perform a systematic genomic, transcriptomic and proteomic profiling of 6 isogenic clones, using whole-exome DNA, mRNA and miRNA sequencing, as well as proteomics. Concomitantly, we functionally interrogate their cellular vulnerabilities, using genome-wide CRISPR/Cas9 and large-scale drug screens. Aneuploid clones activate the DNA damage response and are more resistant to further DNA damage induction. Aneuploid cells also exhibit elevated RAF/MEK/ERK pathway activity and are more sensitive to clinically-relevant drugs targeting this pathway, and in particular to CRAF inhibition. Importantly, CRAF and MEK inhibition sensitize aneuploid cells to DNA damage-inducing chemotherapies and to PARP inhibitors. We validate these results in human cancer cell lines. Moreover, resistance of cancer patients to olaparib is associated with high levels of RAF/MEK/ERK signaling, specifically in highly-aneuploid tumors. Overall, our study provides a comprehensive resource for genetically-matched karyotypically-stable cells of various aneuploidy states, and reveals a therapeutically-relevant cellular dependency of aneuploid cells.


Asunto(s)
Aneuploidia , Daño del ADN , Sistema de Señalización de MAP Quinasas , Ftalazinas , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ftalazinas/farmacología , Línea Celular Tumoral , Piperazinas/farmacología , Quinasas raf/metabolismo , Quinasas raf/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Sistemas CRISPR-Cas , Línea Celular , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/genética , Resistencia a Antineoplásicos/genética
17.
Science ; 385(6712): eadj8691, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39208110

RESUMEN

Chromosome-containing micronuclei are a hallmark of aggressive cancers. Micronuclei frequently undergo irreversible collapse, exposing their enclosed chromatin to the cytosol. Micronuclear rupture catalyzes chromosomal rearrangements, epigenetic abnormalities, and inflammation, yet mechanisms safeguarding micronuclear integrity are poorly understood. In this study, we found that mitochondria-derived reactive oxygen species (ROS) disrupt micronuclei by promoting a noncanonical function of charged multivesicular body protein 7 (CHMP7), a scaffolding protein for the membrane repair complex known as endosomal sorting complex required for transport III (ESCRT-III). ROS retained CHMP7 in micronuclei while disrupting its interaction with other ESCRT-III components. ROS-induced cysteine oxidation stimulated CHMP7 oligomerization and binding to the nuclear membrane protein LEMD2, disrupting micronuclear envelopes. Furthermore, this ROS-CHMP7 pathological axis engendered chromosome shattering known to result from micronuclear rupture. It also mediated micronuclear disintegrity under hypoxic conditions, linking tumor hypoxia with downstream processes driving cancer progression.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Proteínas de la Membrana , Micronúcleos con Defecto Cromosómico , Neoplasias , Proteínas Nucleares , Estrés Oxidativo , Humanos , Hipoxia de la Célula , Cromatina/metabolismo , Cisteína/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Células HeLa
18.
EMBO J ; 28(17): 2511-31, 2009 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-19629042

RESUMEN

Kinetochores are large protein assemblies built on chromosomal loci named centromeres. The main functions of kinetochores can be grouped under four modules. The first module, in the inner kinetochore, contributes a sturdy interface with centromeric chromatin. The second module, the outer kinetochore, contributes a microtubule-binding interface. The third module, the spindle assembly checkpoint, is a feedback control mechanism that monitors the state of kinetochore-microtubule attachment to control the progression of the cell cycle. The fourth module discerns correct from improper attachments, preventing the stabilization of the latter and allowing the selective stabilization of the former. In this review, we discuss how the molecular organization of the four modules allows a dynamic integration of kinetochore-microtubule attachment with the prevention of chromosome segregation errors and cell-cycle progression.


Asunto(s)
Cinetocoros/fisiología , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/fisiología , Genes cdc , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos
19.
Commun Biol ; 6(1): 9, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599901

RESUMEN

Profilin 1-encoded by PFN1-is a small actin-binding protein with a tumour suppressive role in various adenocarcinomas and pagetic osteosarcomas. However, its contribution to tumour development is not fully understood. Using fix and live cell imaging, we report that Profilin 1 inactivation results in multiple mitotic defects, manifested prominently by anaphase bridges, multipolar spindles, misaligned and lagging chromosomes, and cytokinesis failures. Accordingly, next-generation sequencing technologies highlighted that Profilin 1 knock-out cells display extensive copy-number alterations, which are associated with complex genome rearrangements and chromothripsis events in primary pagetic osteosarcomas with Profilin 1 inactivation. Mechanistically, we show that Profilin 1 is recruited to the spindle midzone at anaphase, and its deficiency reduces the supply of actin filaments to the cleavage furrow during cytokinesis. The mitotic defects are also observed in mouse embryonic fibroblasts and mesenchymal cells deriving from a newly generated knock-in mouse model harbouring a Pfn1 loss-of-function mutation. Furthermore, nuclear atypia is also detected in histological sections of mutant femurs. Thus, our results indicate that Profilin 1 has a role in regulating cell division, and its inactivation triggers mitotic defects, one of the major mechanisms through which tumour cells acquire chromosomal instability.


Asunto(s)
Fibroblastos , Inestabilidad Genómica , Profilinas , Animales , Humanos , Ratones , Anafase/genética , Citocinesis/genética , Inestabilidad Genómica/genética , Mitosis/genética , Profilinas/genética , Profilinas/metabolismo , Osteosarcoma/genética , Osteosarcoma/metabolismo
20.
Nat Commun ; 14(1): 1353, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906648

RESUMEN

Chromosome instability (CIN) is the most common form of genome instability and is a hallmark of cancer. CIN invariably leads to aneuploidy, a state of karyotype imbalance. Here, we show that aneuploidy can also trigger CIN. We found that aneuploid cells experience DNA replication stress in their first S-phase and precipitate in a state of continuous CIN. This generates a repertoire of genetically diverse cells with structural chromosomal abnormalities that can either continue proliferating or stop dividing. Cycling aneuploid cells display lower karyotype complexity compared to the arrested ones and increased expression of DNA repair signatures. Interestingly, the same signatures are upregulated in highly-proliferative cancer cells, which might enable them to proliferate despite the disadvantage conferred by aneuploidy-induced CIN. Altogether, our study reveals the short-term origins of CIN following aneuploidy and indicates the aneuploid state of cancer cells as a point mutation-independent source of genome instability, providing an explanation for aneuploidy occurrence in tumors.


Asunto(s)
Aberraciones Cromosómicas , Neoplasias , Humanos , Aneuploidia , Inestabilidad Genómica , Inestabilidad Cromosómica , Neoplasias/genética , Cariotipo , Segregación Cromosómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA