RESUMEN
The finding of a genotype-negative hypertrophic cardiomyopathy (HCM) pedigree with several affected members indicating a familial origin of the disease has driven this study to discover causative gene variants. Genetic testing of the proband and subsequent family screening revealed the presence of a rare variant in the MYBPC3 gene, c.3331-26T>G in intron 30, with evidence supporting cosegregation with the disease in the family. An analysis of potential splice-altering activity using several splicing algorithms consistently yielded low scores. Minigene expression analysis at the mRNA and protein levels revealed that c.3331-26T>G is a spliceogenic variant with major splice-altering activity leading to undetectable levels of properly spliced transcripts or the corresponding protein. Minigene and patient mRNA analyses indicated that this variant induces complete and partial retention of intron 30, which was expected to lead to haploinsufficiency in carrier patients. As most spliceogenic MYBPC3 variants, c.3331-26T>G appears to be non-recurrent, since it was identified in only two additional unrelated probands in our large HCM cohort. In fact, the frequency analysis of 46 known splice-altering MYBPC3 intronic nucleotide substitutions in our HCM cohort revealed 9 recurrent and 16 non-recurrent variants present in a few probands (≤ 4), while 21 were not detected. The identification of non-recurrent elusive MYBPC3 spliceogenic variants that escape detection by in silico algorithms represents a challenge for genetic diagnosis of HCM and contributes to solving a fraction of genotype-negative HCM cases.
Asunto(s)
Cardiomiopatía Hipertrófica , Proteínas Portadoras , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/genética , Proteínas Portadoras/genética , Proteínas del Citoesqueleto/genética , Haploinsuficiencia , Humanos , Mutación , Linaje , ARN MensajeroRESUMEN
The diagnosis of rare diseases with multisystem manifestations can constitute a difficult process that delays the determination of the underlying cause. Whole exome sequencing (WES) provides a suitable option to examine multiple target genes associated with several disorders that display common features. In this study, we report the case of a female patient suspected of having Sotos syndrome. Screening for the initially selected genes, considering Sotos syndrome and Sotos-like disorders, did not identify any pathogenic variants that could explain the phenotype. The extended analysis, which considered all genes in the exome associated with features consistent with those shown by the studied patient, revealed a novel frameshift variant in the AMER1 gene, responsible for osteopathia striata with cranial sclerosis. WES analysis and an updated revision of previously reported disease-causing mutations, proved useful to reach an accurate diagnosis and guide further examination to identify critical abnormalities.