Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 149: 109549, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599365

RESUMEN

The study was designed to investigate the effects of replacing fish oil by algal oil and rapeseed oil on histomorphology indices of the intestine, skin and gill, mucosal barrier status and immune-related genes of mucin and antimicrobial peptide (AMP) genes in Atlantic salmon (Salmo salar). For these purposes, Atlantic salmon smolts were fed three different diets. The first was a control diet containing fish oil but no Schizochytrium oil. In the second diet, almost 50 % of the fish oil was replaced with algal oil, and in the third diet, fish oil was replaced entirely with algal oil. The algal oil contained mostly docosahexaenoic acid (DHA) and some eicosapentaenoic acid (EPA). The study lasted for 49 days in freshwater (FW), after which some fish from each diet group were transferred to seawater (SW) for a 48-h challenge test at 33 ppt to test their ability to tolerate high salinity. Samples of skin, gills, and mid intestine [both distal (DI) and anterior (AI) portions of the mid intestine] were collected after the feeding trial in FW and after the SW-challenge test to assess the effects of the diets on the structure and immune functions of the mucosal surfaces. The results showed that the 50 % VMO (Veramaris® algal oil) dietary group had improved intestinal, skin, and gill structures. Principal component analysis (PCA) of the histomorphological parameters demonstrated a significant effect of the algal oil on the intestine, skin, and gills. In particular, the mucosal barrier function of the intestine, skin, and gills was enhanced in the VMO 50 % dietary group after the SW challenge, as evidenced by increased mucous cell density. Immunolabelling of heat shock protein 70 (HSP70) in the intestine (both DI and AI) revealed downregulation of the protein expression in the 50 % VMO group and a corresponding upregulation in the 100 % VMO group compared to 0 % VMO. The reactivity of HSP70 in the epithelial cells was higher after the SW challenge compared to the FW phase. Immune-related genes related to mucosal defense, such as mucin genes [muc2, muc5ac1 (DI), muc5ac1 (AI), muc5ac2, muc5b (skin), and muc5ac1 (gills)], and antimicrobial peptide genes [def3 (DI), def3 (AI), and cath1 (skin)] were significantly upregulated in the 50 % VMO group. PCA of gene expression demonstrated the positive influences on gene regulation in the 50 % VMO dietary group. In conclusion, this study demonstrated the positive effect of substituting 50 % of fish oil with algal oil in the diets of Atlantic salmon. The findings of histomorphometry, mucosal mapping, immunohistochemistry, and immune-related genes connected to mucosal responses all support this conclusion.


Asunto(s)
Alimentación Animal , Dieta , Aceite de Brassica napus , Salmo salar , Animales , Salmo salar/inmunología , Dieta/veterinaria , Aceite de Brassica napus/química , Alimentación Animal/análisis , Membrana Mucosa/inmunología , Aceites de Pescado/administración & dosificación , Piel/inmunología , Piel/efectos de los fármacos , Estaciones del Año , Branquias/inmunología , Branquias/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/inmunología
2.
Animals (Basel) ; 11(4)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807244

RESUMEN

Microalgal oils (AOs) emerged recently as an alternative to fish oil and to nutritionally poorer vegetable oils for fish species. In this trial, two experimental diets containing fish oil (negative control: 2.1%; positive control: 13.8%) and two diets incorporating AO at 3.5 and 0.7% were fed to grow out gilthead seabream (Sparus aurata) of 64.5 g initial body weight. After 110 days of experimental feeding, performance (final body weight mean = 147 g) and survival (>99%) were similar across treatments. The highest eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) content in positive control (PC) and 3.5 AO feeds (3.11 and 2.18% of diet, respectively) resulted in the highest EPA + DHA deposition in the fillets (18.40 and 12.36 g/100 g fatty acid, respectively), which entirely reflected the dietary fatty acid profile. Feed and fillets from fish fed the AO diets had lower levels of dioxins and polychlorinated biphenyls (PCBs). Moreover, sensory quality of AO fillets scored equally to the PC fish. Collectively, these findings offer a more resilient means for sustaining the future growth of seabream aquaculture, whilst maintaining the nutritional value of the resulting seafood. The data supports the addition of seabream to the list of aquaculture species where microalgal oil can be used as an ingredient to fulfil their challenging nutritional demands.

3.
Mar Genomics ; 5: 7-13, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22325717

RESUMEN

Marine fish species exhibit low capacity to biosynthesise highly unsaturated fatty acid (HUFA) in comparison to strict freshwater and anadromous species. It is admitted that the Delta(6) desaturase (FADS2) is a key enzyme in the HUFA biosynthetic pathway. We investigated by quantitative PCR the relative amounts of FADS2 mRNA in European sea bass (Dicentrarchus labrax) in comparison with a salmonid species, the rainbow trout (Oncorhynchus mykiss L.). The analysis of the expression data was performed regarding the difference of the characteristics of a critical fragment of the fads2 gene promoter between sea bass and Atlantic salmon. The lower level of fads2 gene expression observed in sea bass suggested that fads2 gene putative promoter, which exhibited an E-box like Sterol Regulatory Element (SRE) site but lacked a Sp1 site, is less active in this marine species. The cytosine methylation of CpG sites in the putative promoter region including E-box like SRE and NF-Y binding sites of sea bass fads2 gene was also investigated following a nutritional conditioning of larvae. However, no significant difference of CpG methylation could be found for any of the 28 CpGs analysed between larvae fed diet with high or low HUFA contents. In conclusion, the present data revealed lower constitutive expression of the fads2 gene possibly related to different characteristics of gene promoter in sea bass in comparison with salmonid species, and indicated that long-term conditioning of fads2 gene expression did not influence the methylation of the gene promoter at potential SRE binding site.


Asunto(s)
Lubina/genética , Metilación de ADN , Ácido Graso Desaturasas/genética , Regiones Promotoras Genéticas , Animales , Secuencia de Bases , Lubina/metabolismo , Sitios de Unión , Islas de CpG , Dieta/veterinaria , Ácidos Grasos Insaturados/biosíntesis , Expresión Génica , Datos de Secuencia Molecular , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Alineación de Secuencia , Especificidad de la Especie
4.
Mar Biotechnol (NY) ; 13(1): 22-31, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20333428

RESUMEN

Fish are the main source of the n-3 highly unsaturated fatty acids, which are crucial for human health. Their synthesis from C(18) precursors is mediated by desaturases and elongases, but the activity of these enzymes has not been conclusively established in marine fish species. This study reports the cloning, tissue expression, and functional characterization of a sea bass (Dicentrarchus labrax L.) Δ6-desaturase and one of its splicing variants. Two cDNAs with open reading frames of 1,346 and 1,354 bp were cloned and named D6D and D6D-V, respectively. Both deduced protein sequences (445 and 387 amino acids, respectively) contained two transmembrane regions and the N-terminal cytochrome b(5) domain with the HPGG motif characteristic of microsomal desaturases. D6D presents three histidine-rich regions, whereas in D6D-V, an insertion of eight nucleotides in the boundaries of exons 10 and 11 modified the third histidine-rich domain and led to insertion of a premature STOP codon, resulting in a shorter predicted protein. Quantitative real-time polymerase chain reaction assay of gene expression showed that D6D was highly expressed in the brain and intestine, and to a lesser extent, in muscle and liver; meanwhile, D6D-V was expressed in all tissues tested, but at level at least 200-fold lower than D6D. Functional analysis in yeast showed that sea bass D6D encodes a fully functional Δ6-desaturase with no residual Δ5-desaturase activity. This desaturase does not exhibit a clear preference for n-3 versus n-6 C(18) substrates. Interestingly, D6D-V is a nonfunctional protein, suggesting that the C-terminal end is indispensable for protein activity.


Asunto(s)
Lubina/genética , Proteínas de Peces/genética , Linoleoil-CoA Desaturasa/genética , Secuencia de Aminoácidos , Animales , Lubina/metabolismo , Clonación Molecular , Ácidos Grasos Insaturados/metabolismo , Proteínas de Peces/metabolismo , Linoleoil-CoA Desaturasa/metabolismo , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA