Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
PLoS Biol ; 21(4): e3002048, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37014915

RESUMEN

One of the deepest branches in the tree of life separates the Archaea from the Bacteria. These prokaryotic groups have distinct cellular systems including fundamentally different phospholipid membrane bilayers. This dichotomy has been termed the lipid divide and possibly bestows different biophysical and biochemical characteristics on each cell type. Classic experiments suggest that bacterial membranes (formed from lipids extracted from Escherichia coli, for example) show permeability to key metabolites comparable to archaeal membranes (formed from lipids extracted from Halobacterium salinarum), yet systematic analyses based on direct measurements of membrane permeability are absent. Here, we develop a new approach for assessing the membrane permeability of approximately 10 µm unilamellar vesicles, consisting of an aqueous medium enclosed by a single lipid bilayer. Comparing the permeability of 18 metabolites demonstrates that diether glycerol-1-phosphate lipids with methyl branches, often the most abundant membrane lipids of sampled archaea, are permeable to a wide range of compounds useful for core metabolic networks, including amino acids, sugars, and nucleobases. Permeability is significantly lower in diester glycerol-3-phosphate lipids without methyl branches, the common building block of bacterial membranes. To identify the membrane characteristics that determine permeability, we use this experimental platform to test a variety of lipid forms bearing a diversity of intermediate characteristics. We found that increased membrane permeability is dependent on both the methyl branches on the lipid tails and the ether bond between the tails and the head group, both of which are present on the archaeal phospholipids. These permeability differences must have had profound effects on the cell physiology and proteome evolution of early prokaryotic forms. To explore this further, we compare the abundance and distribution of transmembrane transporter-encoding protein families present on genomes sampled from across the prokaryotic tree of life. These data demonstrate that archaea tend to have a reduced repertoire of transporter gene families, consistent with increased membrane permeation. These results demonstrate that the lipid divide demarcates a clear difference in permeability function with implications for understanding some of the earliest transitions in cell origins and evolution.


Asunto(s)
Archaea , Liposomas Unilamelares , Archaea/genética , Liposomas Unilamelares/metabolismo , Glicerol/metabolismo , Membrana Celular/metabolismo , Bacterias/metabolismo , Lípidos de la Membrana/metabolismo , Fosfolípidos/metabolismo , Fosfatos/metabolismo , Membrana Dobles de Lípidos/análisis , Membrana Dobles de Lípidos/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(37): e2200014119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067300

RESUMEN

Enzymes catalyze key reactions within Earth's life-sustaining biogeochemical cycles. Here, we use metaproteomics to examine the enzymatic capabilities of the microbial community (0.2 to 3 µm) along a 5,000-km-long, 1-km-deep transect in the central Pacific Ocean. Eighty-five percent of total protein abundance was of bacterial origin, with Archaea contributing 1.6%. Over 2,000 functional KEGG Ontology (KO) groups were identified, yet only 25 KO groups contributed over half of the protein abundance, simultaneously indicating abundant key functions and a long tail of diverse functions. Vertical attenuation of individual proteins displayed stratification of nutrient transport, carbon utilization, and environmental stress. The microbial community also varied along horizontal scales, shaped by environmental features specific to the oligotrophic North Pacific Subtropical Gyre, the oxygen-depleted Eastern Tropical North Pacific, and nutrient-rich equatorial upwelling. Some of the most abundant proteins were associated with nitrification and C1 metabolisms, with observed interactions between these pathways. The oxidoreductases nitrite oxidoreductase (NxrAB), nitrite reductase (NirK), ammonia monooxygenase (AmoABC), manganese oxidase (MnxG), formate dehydrogenase (FdoGH and FDH), and carbon monoxide dehydrogenase (CoxLM) displayed distributions indicative of biogeochemical status such as oxidative or nutritional stress, with the potential to be more sensitive than chemical sensors. Enzymes that mediate transformations of atmospheric gases like CO, CO2, NO, methanethiol, and methylamines were most abundant in the upwelling region. We identified hot spots of biochemical transformation in the central Pacific Ocean, highlighted previously understudied metabolic pathways in the environment, and provided rich empirical data for biogeochemical models critical for forecasting ecosystem response to climate change.


Asunto(s)
Proteínas Arqueales , Proteínas Bacterianas , Microbiota , Nitrificación , Agua de Mar , Archaea/clasificación , Archaea/enzimología , Proteínas Arqueales/análisis , Bacterias/clasificación , Bacterias/enzimología , Proteínas Bacterianas/análisis , Biodiversidad , Nitrito Reductasas/metabolismo , Océano Pacífico , Proteómica/métodos , Agua de Mar/microbiología
3.
Environ Microbiol ; 25(3): 689-704, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36478085

RESUMEN

Marine Group I (MGI) Thaumarchaeota were originally described as chemoautotrophic nitrifiers, but molecular and isotopic evidence suggests heterotrophic and/or mixotrophic capabilities. Here, we investigated the quantity and composition of organic matter assimilated by individual, uncultured MGI cells from the Pacific Ocean to constrain their potential for mixotrophy and heterotrophy. We observed that most MGI cells did not assimilate carbon from any organic substrate provided (glucose, pyruvate, oxaloacetate, protein, urea, and amino acids). The minority of MGI cells that did assimilate it did so exclusively from nitrogenous substrates (urea, 15% of MGI and amino acids, 36% of MGI), and only as an auxiliary carbon source (<20% of that subset's total cellular carbon was derived from those substrates). At the population level, MGI assimilation of organic carbon comprised just 0.5%-11% of total biomass carbon. We observed extensive assimilation of inorganic carbon and urea- and amino acid-derived nitrogen (equal to that from ammonium), consistent with metagenomic and metatranscriptomic analyses performed here and previously showing a widespread potential for MGI to perform autotrophy and transport and degrade organic nitrogen. Our results constrain the quantity and composition of organic matter used by MGI and suggest they use it primarily to meet nitrogen demands for anabolism and nitrification.


Asunto(s)
Archaea , Carbono , Archaea/metabolismo , Carbono/metabolismo , Aminoácidos/metabolismo , Urea/metabolismo , Nitrógeno/metabolismo
4.
Limnol Oceanogr ; 68(1): 84-96, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37064272

RESUMEN

Nitrifying microorganisms, including ammonia-oxidizing archaea, ammonia-oxidizing bacteria, and nitrite-oxidizing bacteria, are the most abundant chemoautotrophs in the ocean and play an important role in the global carbon cycle by fixing dissolved inorganic carbon (DIC) into biomass. The release of organic compounds by these microbes is not well quantified, but may represent an as-yet unaccounted source of dissolved organic carbon (DOC) available to marine food webs. Here, we provide measurements of cellular carbon and nitrogen quotas, DIC fixation yields and DOC release of 10 phylogenetically diverse marine nitrifiers. All investigated strains released DOC during growth, representing on average 5-15% of the fixed DIC. Changes in substrate concentration and temperature did not affect the proportion of fixed DIC released as DOC, but release rates varied between closely related species. Our results also indicate previous studies may have underestimated DIC fixation yields of marine nitrite oxidizers due to partial decoupling of nitrite oxidation from CO2 fixation, and due to lower observed yields in artificial compared to natural seawater medium. The results of this study provide critical values for biogeochemical models of the global carbon cycle, and help to further constrain the implications of nitrification-fueled chemoautotrophy for marine food-web functioning and the biological sequestration of carbon in the ocean.

5.
Proc Natl Acad Sci U S A ; 117(22): 11954-11960, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32424089

RESUMEN

Assessment of the global budget of the greenhouse gas nitrous oxide ([Formula: see text]O) is limited by poor knowledge of the oceanic [Formula: see text]O flux to the atmosphere, of which the magnitude, spatial distribution, and temporal variability remain highly uncertain. Here, we reconstruct climatological [Formula: see text]O emissions from the ocean by training a supervised learning algorithm with over 158,000 [Formula: see text]O measurements from the surface ocean-the largest synthesis to date. The reconstruction captures observed latitudinal gradients and coastal hot spots of [Formula: see text]O flux and reveals a vigorous global seasonal cycle. We estimate an annual mean [Formula: see text]O flux of 4.2 ± 1.0 Tg N[Formula: see text], 64% of which occurs in the tropics, and 20% in coastal upwelling systems that occupy less than 3% of the ocean area. This [Formula: see text]O flux ranges from a low of 3.3 ± 1.3 Tg N[Formula: see text] in the boreal spring to a high of 5.5 ± 2.0 Tg N[Formula: see text] in the boreal summer. Much of the seasonal variations in global [Formula: see text]O emissions can be traced to seasonal upwelling in the tropical ocean and winter mixing in the Southern Ocean. The dominant contribution to seasonality by productive, low-oxygen tropical upwelling systems (>75%) suggests a sensitivity of the global [Formula: see text]O flux to El Niño-Southern Oscillation and anthropogenic stratification of the low latitude ocean. This ocean flux estimate is consistent with the range adopted by the Intergovernmental Panel on Climate Change, but reduces its uncertainty by more than fivefold, enabling more precise determination of other terms in the atmospheric [Formula: see text]O budget.

6.
Proc Natl Acad Sci U S A ; 116(41): 20574-20583, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548428

RESUMEN

Giant viruses are remarkable for their large genomes, often rivaling those of small bacteria, and for having genes thought exclusive to cellular life. Most isolated to date infect nonmarine protists, leaving their strategies and prevalence in marine environments largely unknown. Using eukaryotic single-cell metagenomics in the Pacific, we discovered a Mimiviridae lineage of giant viruses, which infects choanoflagellates, widespread protistan predators related to metazoans. The ChoanoVirus genomes are the largest yet from pelagic ecosystems, with 442 of 862 predicted proteins lacking known homologs. They are enriched in enzymes for modifying organic compounds, including degradation of chitin, an abundant polysaccharide in oceans, and they encode 3 divergent type-1 rhodopsins (VirR) with distinct evolutionary histories from those that capture sunlight in cellular organisms. One (VirRDTS) is similar to the only other putative rhodopsin from a virus (PgV) with a known host (a marine alga). Unlike the algal virus, ChoanoViruses encode the entire pigment biosynthesis pathway and cleavage enzyme for producing the required chromophore, retinal. We demonstrate that the rhodopsin shared by ChoanoViruses and PgV binds retinal and pumps protons. Moreover, our 1.65-Å resolved VirRDTS crystal structure and mutational analyses exposed differences from previously characterized type-1 rhodopsins, all of which come from cellular organisms. Multiple VirR types are present in metagenomes from across surface oceans, where they are correlated with and nearly as abundant as a canonical marker gene from Mimiviridae Our findings indicate that light-dependent energy transfer systems are likely common components of giant viruses of photosynthetic and phagotrophic unicellular marine eukaryotes.


Asunto(s)
Evolución Biológica , Eucariontes/virología , Virus Gigantes/genética , Phycodnaviridae/genética , Rodopsina/metabolismo , Agua de Mar/virología , Proteínas Virales/metabolismo , Ecosistema , Genoma Viral , Virus Gigantes/clasificación , Metagenómica , Océanos y Mares , Phycodnaviridae/clasificación , Filogenia , Protones , Rodopsina/química , Rodopsina/genética , Proteínas Virales/química , Proteínas Virales/genética
7.
Environ Microbiol ; 22(1): 499-519, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31743949

RESUMEN

There are a few baseline reef-systems available for understanding the microbiology of healthy coral reefs and their surrounding seawater. Here, we examined the seawater microbial ecology of 25 Northern Caribbean reefs varying in human impact and protection in Cuba and the Florida Keys, USA, by measuring nutrient concentrations, microbial abundances, and respiration rates as well as sequencing bacterial and archaeal amplicons and community functional genes. Overall, seawater microbial composition and biogeochemistry were influenced by reef location and hydrogeography. Seawater from the highly protected 'crown jewel' offshore reefs in Jardines de la Reina, Cuba had low concentrations of nutrients and organic carbon, abundant Prochlorococcus, and high microbial community alpha diversity. Seawater from the less protected system of Los Canarreos, Cuba had elevated microbial community beta-diversity whereas waters from the most impacted nearshore reefs in the Florida Keys contained high organic carbon and nitrogen concentrations and potential microbial functions characteristic of microbialized reefs. Each reef system had distinct microbial signatures and within this context, we propose that the protection and offshore nature of Jardines de la Reina may preserve the oligotrophic paradigm and the metabolic dependence of the community on primary production by picocyanobacteria.


Asunto(s)
Antozoos/microbiología , Archaea/genética , Bacterias/genética , Agua de Mar/microbiología , Animales , Archaea/clasificación , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/aislamiento & purificación , Región del Caribe , Arrecifes de Coral , Cuba , Florida , Humanos , Microbiota/genética
8.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32245755

RESUMEN

Anthropogenic activity impacts stream ecosystems, resulting in a loss of diversity and ecosystem function; however, little is known about the response of aquatic microbial communities to changes in land use. Here, microbial communities were characterized in 82 headwater streams across a gradient of urban and agricultural land uses using 16S rRNA gene amplicon sequencing and compared to a rich data set of physicochemical variables and traditional benthic invertebrate indicators. Microbial diversity and community structures differed among watersheds with high agricultural, urban, and forested land uses, and community structure differed in streams classified as being in good, fair, poor, and very poor condition using benthic invertebrate indicators. Microbial community similarity decayed with geodesic distance across the study region but not with environmental distance. Stream community respiration rates ranged from 21.7 to 1,570 mg O2 m-2 day-1 and 31.9 to 3,670 mg O2 m-2 day-1 for water column and sediments, respectively, and correlated with nutrients associated with anthropogenic influence and microbial community structure. Nitrous oxide (N2O) concentrations ranged from 0.22 to 4.41 µg N2O liter-1; N2O concentration was negatively correlated with forested land use and was positively correlated with dissolved inorganic nitrogen concentrations. Our findings suggest that stream microbial communities are impacted by watershed land use and can potentially be used to assess ecosystem health.IMPORTANCE Stream ecosystems are frequently impacted by changes in watershed land use, resulting in altered hydrology, increased pollutant and nutrient loads, and habitat degradation. Macroinvertebrates and fish are strongly affected by changes in stream conditions and are commonly used in biotic indices to assess ecosystem health. Similarly, microbes respond to environmental stressors, and changes in community composition alter key ecosystem processes. The response of microbes to habitat degradation and their role in global biogeochemical cycles provide an opportunity to use microbes as a monitoring tool. Here, we identify stream microbes that respond to watershed urbanization and agricultural development and demonstrate that microbial diversity and community structure can be used to assess stream conditions and ecosystem functioning.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Microbiota , Ríos/microbiología , Agricultura , Archaea/clasificación , Bacterias/clasificación , Ciudades , Maryland , ARN de Archaea/análisis , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Estaciones del Año
9.
Proc Natl Acad Sci U S A ; 114(36): E7489-E7498, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28827361

RESUMEN

Phytoplankton community structure is shaped by both bottom-up factors, such as nutrient availability, and top-down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer.


Asunto(s)
Transferencia de Gen Horizontal/genética , Interacciones Huésped-Patógeno/genética , Nitrógeno/metabolismo , Fitoplancton/virología , Proteínas Virales/metabolismo , Membrana Celular/virología , Chlorophyta/virología , Genes Virales/genética , Genoma Viral/genética
10.
J Eukaryot Microbiol ; 66(3): 519-524, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30080299

RESUMEN

Recent surveys of marine microbial diversity have identified a previously unrecognized lineage of diplonemid protists as being among the most diverse heterotrophic eukaryotes in global oceans. Despite their monophyly (and assumed importance), they lack a formal taxonomic description, and are informally known as deep-sea pelagic diplonemids (DSPDs) or marine diplonemids. Recently, we documented morphology and molecular sequences from several DSPDs, one of which is particularly widespread and abundant in environmental sequence data. To simplify the communication of future work on this important group, here we formally propose to erect the family Eupelagonemidae to encompass this clade, as well as a formal genus and species description for the apparently most abundant phylotype, Eupelagonema oceanica, for which morphological information and single-cell amplified genome data are currently available.


Asunto(s)
Euglenozoos/clasificación , Euglenozoos/citología , Euglenozoos/genética , Filogenia , ARN Protozoario/análisis
11.
J Eukaryot Microbiol ; 66(4): 574-581, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30444565

RESUMEN

Spores of the dinoflagellate Chytriodinium are known to infest copepod eggs causing their lethality. Despite the potential to control the population of such an ecologically important host, knowledge about Chytriodinium parasites is limited: we know little about phylogeny, parasitism, abundance, or geographical distribution. We carried out genome sequence surveys on four manually isolated sporocytes from the same sporangium, which seemed to be attached to a copepod nauplius, to analyze the phylogenetic position of Chytriodinium based on SSU and concatenated SSU/LSU rRNA gene sequences, and also characterize two genes related to the plastidial heme pathway, hemL and hemY. The results suggest the presence of a cryptic plastid in Chytriodinium and a photosynthetic ancestral state of the parasitic Chytriodinium/Dissodinium clade. Finally, by mapping Tara Oceans V9 SSU amplicon data to the recovered SSU rRNA gene sequences from the sporocytes, we show that globally, Chytriodinium parasites are most abundant within the pico/nano- and mesoplankton of the surface ocean and almost absent within microplankton, a distribution indicating that they generally exist either as free-living spores or host-associated sporangia.


Asunto(s)
Copépodos/parasitología , Dinoflagelados/fisiología , Genoma de Protozoos , Interacciones Huésped-Parásitos , Animales , Dinoflagelados/clasificación , Dinoflagelados/genética , Genes Protozoarios , Genes de ARNr , Filogenia , Plastidios/fisiología
12.
Proc Natl Acad Sci U S A ; 113(28): 7762-7, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27357675

RESUMEN

Archaeal membrane lipids known as glycerol dibiphytanyl glycerol tetraethers (GDGTs) are the basis of the TEX86 paleotemperature proxy. Because GDGTs preserved in marine sediments are thought to originate mainly from planktonic, ammonia-oxidizing Thaumarchaeota, the basis of the correlation between TEX86 and sea surface temperature (SST) remains unresolved: How does TEX86 predict surface temperatures, when maximum thaumarchaeal activity occurs below the surface mixed layer and TEX86 does not covary with in situ growth temperatures? Here we used isothermal studies of the model thaumarchaeon Nitrosopumilus maritimus SCM1 to investigate how GDGT composition changes in response to ammonia oxidation rate. We used continuous culture methods to avoid potential confounding variables that can be associated with experiments in batch cultures. The results show that the ring index scales inversely (R(2) = 0.82) with ammonia oxidation rate (ϕ), indicating that GDGT cyclization depends on available reducing power. Correspondingly, the TEX86 ratio decreases by an equivalent of 5.4 °C of calculated temperature over a 5.5 fmol·cell(-1)·d(-1) increase in ϕ. This finding reconciles other recent experiments that have identified growth stage and oxygen availability as variables affecting TEX86 Depth profiles from the marine water column show minimum TEX86 values at the depth of maximum nitrification rates, consistent with our chemostat results. Our findings suggest that the TEX86 signal exported from the water column is influenced by the dynamics of ammonia oxidation. Thus, the global TEX86-SST calibration potentially represents a composite of regional correlations based on nutrient dynamics and global correlations based on archaeal community composition and temperature.


Asunto(s)
Amoníaco/metabolismo , Archaea/metabolismo , Éteres de Glicerilo/metabolismo , Metabolismo de los Lípidos , Paleontología/métodos , Técnicas de Cultivo , Metabolismo Energético , Océanos y Mares , Oxidación-Reducción , Temperatura
13.
Environ Microbiol ; 20(6): 2112-2124, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29626379

RESUMEN

Thaumarchaea are ubiquitous in marine habitats where they participate in carbon and nitrogen cycling. Although metatranscriptomes suggest thaumarchaea are active microbes in marine waters, we understand little about how thaumarchaeal gene expression patterns relate to substrate utilization and activity. Here, we report the global transcriptional response of the marine ammonia-oxidizing thaumarchaeon 'Candidatus Nitrosopelagicus brevis' str. CN25 to ammonia limitation using RNA-Seq. We further describe the genome and transcriptome of Ca. N. brevis str. U25, a new strain capable of urea utilization. Ammonia limitation in CN25 resulted in reduced expression of transcripts coding for ammonia oxidation proteins, and increased expression of a gene coding an Hsp20-like chaperone. Despite significantly different transcript abundances across treatments, two ammonia monooxygenase subunits (amoAB), a nitrite reductase (nirK) and both ammonium transporter genes were always among the most abundant transcripts, regardless of growth state. Ca. N. brevis str. U25 cells expressed a urea transporter 139-fold more than the urease catalytic subunit ureC. Gene coexpression networks derived from culture transcriptomes and 10 thaumarchaea-enriched metatranscriptomes revealed a high degree of correlated gene expression across disparate environmental conditions and identified a module of coexpressed genes, including amoABC and nirK, that we hypothesize to represent the core ammonia oxidation machinery.


Asunto(s)
Amoníaco/metabolismo , Archaea/metabolismo , Regulación de la Expresión Génica Arqueal/fisiología , Ureasa/metabolismo , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Archaea/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Regulación Enzimológica de la Expresión Génica , Nitrito Reductasas/genética , Ciclo del Nitrógeno , Oxidación-Reducción , Oxidorreductasas , Filogenia , Urea/metabolismo , Ureasa/genética
14.
Environ Microbiol ; 20(2): 815-827, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29215213

RESUMEN

Photosynthetic picoeukaryotes contribute a significant fraction of primary production in the upper ocean. Micromonas pusilla is an ecologically relevant photosynthetic picoeukaryote, abundantly and widely distributed in marine waters. Grazing by protists may control the abundance of picoeukaryotes such as M. pusilla, but the diversity of the responsible grazers is poorly understood. To identify protists consuming photosynthetic picoeukaryotes in a productive North Pacific Ocean region, we amended seawater with living 15 N, 13 C-labelled M. pusilla cells in a 24-h replicated bottle experiment. DNA stable isotope probing, combined with high-throughput sequencing of V4 hypervariable regions from 18S rRNA gene amplicons (Tag-SIP), identified 19 operational taxonomic units (OTUs) of microbial eukaryotes that consumed M. pusilla. These OTUs were distantly related to cultured taxa within the dinoflagellates, ciliates, stramenopiles (MAST-1C and MAST-3 clades) and Telonema flagellates, thus, far known only from their environmental 18S rRNA gene sequences. Our discovery of eukaryotic prey consumption by MAST cells confirms that their trophic role in marine microbial food webs includes grazing upon picoeukaryotes. Our study provides new experimental evidence directly linking the genetic identity of diverse uncultivated microbial eukaryotes to the consumption of picoeukaryotic phytoplankton in the upper ocean.


Asunto(s)
Chlorophyta/fisiología , Cilióforos/metabolismo , Cadena Alimentaria , Fitoplancton/fisiología , Estramenopilos/metabolismo , Chlorophyta/genética , Cilióforos/genética , Isótopos , Océanos y Mares , Océano Pacífico , Fotosíntesis , Filogenia , Fitoplancton/genética , ARN Ribosómico 18S/genética , Agua de Mar/microbiología , Agua de Mar/parasitología , Análisis de Secuencia de ADN , Estramenopilos/genética
15.
Proc Natl Acad Sci U S A ; 112(4): 1173-8, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25587132

RESUMEN

Thaumarchaeota are among the most abundant microbial cells in the ocean, but difficulty in cultivating marine Thaumarchaeota has hindered investigation into the physiological and evolutionary basis of their success. We report here a closed genome assembled from a highly enriched culture of the ammonia-oxidizing pelagic thaumarchaeon CN25, originating from the open ocean. The CN25 genome exhibits strong evidence of genome streamlining, including a 1.23-Mbp genome, a high coding density, and a low number of paralogous genes. Proteomic analysis recovered nearly 70% of the predicted proteins encoded by the genome, demonstrating that a high fraction of the genome is translated. In contrast to other minimal marine microbes that acquire, rather than synthesize, cofactors, CN25 encodes and expresses near-complete biosynthetic pathways for multiple vitamins. Metagenomic fragment recruitment indicated the presence of DNA sequences >90% identical to the CN25 genome throughout the oligotrophic ocean. We propose the provisional name "Candidatus Nitrosopelagicus brevis" str. CN25 for this minimalist marine thaumarchaeon and suggest it as a potential model system for understanding archaeal adaptation to the open ocean.


Asunto(s)
Archaea , Proteínas Arqueales , Regulación de la Expresión Génica Arqueal/fisiología , Proteoma , Proteómica , Microbiología del Agua , Secuencia de Aminoácidos , Archaea/clasificación , Archaea/genética , Archaea/metabolismo , Proteínas Arqueales/biosíntesis , Proteínas Arqueales/genética , Metagenómica , Datos de Secuencia Molecular , Océanos y Mares , Proteoma/biosíntesis , Proteoma/genética
16.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365233

RESUMEN

Microbial community dynamics on sinking particles control the amount of carbon that reaches the deep ocean and the length of time that carbon is stored, with potentially profound impacts on Earth's climate. A mechanistic understanding of the controls on sinking particle distributions has been hindered by limited depth- and time-resolved sampling and methods that cannot distinguish individual particles. Here, we analyze microbial communities on nearly 400 individual sinking particles in conjunction with more conventional composite particle samples to determine how particle colonization and community assembly might control carbon sequestration in the deep ocean. We observed community succession with corresponding changes in microbial metabolic potential on the larger sinking particles transporting a significant fraction of carbon to the deep sea. Microbial community richness decreased as particles aged and sank; however, richness increased with particle size and the attenuation of carbon export. This suggests that the theory of island biogeography applies to sinking marine particles. Changes in POC flux attenuation with time and microbial community composition with depth were reproduced in a mechanistic ecosystem model that reflected a range of POC labilities and microbial growth rates. Our results highlight microbial community dynamics and processes on individual sinking particles, the isolation of which is necessary to improve mechanistic models of ocean carbon uptake.


Asunto(s)
Microbiota , Agua de Mar , Carbono , Secuestro de Carbono
17.
ISME Commun ; 3(1): 107, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783796

RESUMEN

Synechococcus are the most abundant cyanobacteria in high latitude regions and are responsible for an estimated 17% of annual marine net primary productivity. Despite their biogeochemical importance, Synechococcus populations have been unevenly sampled across the ocean, with most studies focused on low-latitude strains. In particular, the near absence of Synechococcus genomes from high-latitude, High Nutrient Low Chlorophyll (HNLC) regions leaves a gap in our knowledge of picocyanobacterial adaptations to iron limitation and their influence on carbon, nitrogen, and iron cycles. We examined Synechococcus populations from the subarctic North Pacific, a well-characterized HNLC region, with quantitative metagenomics. Assembly with short and long reads produced two near complete Synechococcus metagenome-assembled genomes (MAGs). Quantitative metagenome-derived abundances of these populations matched well with flow cytometry counts, and the Synechococcus MAGs were estimated to comprise >99% of the Synechococcus at Station P. Whereas the Station P Synechococcus MAGs contained multiple genes for adaptation to iron limitation, both genomes lacked genes for uptake and assimilation of nitrate and nitrite, suggesting a dependence on ammonium, urea, and other forms of recycled nitrogen leading to reduced iron requirements. A global analysis of Synechococcus nitrate reductase abundance in the TARA Oceans dataset found nitrate assimilation genes are also lower in other HNLC regions. We propose that nitrate and nitrite assimilation gene loss in Synechococcus may represent an adaptation to severe iron limitation in high-latitude regions where ammonium availability is higher. Our findings have implications for models that quantify the contribution of cyanobacteria to primary production and subsequent carbon export.

18.
Open Biol ; 12(7): 220041, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35857930

RESUMEN

Transporter proteins are a vital interface between cells and their environment. In nutrient-limited environments, microbes with transporters that are effective at bringing substrates into their cells will gain a competitive advantage over variants with reduced transport function. Microbial ammonium transporters (Amt) bring ammonium into the cytoplasm from the surrounding periplasm space, but diagnosing Amt adaptations to low nutrient environments solely from sequence data has been elusive. Here, we report altered Amt sequence amino acid distribution from deep marine samples compared to variants sampled from shallow water in two important microbial lineages of the marine water column community-Marine Group I Archaea (Thermoproteota) and the uncultivated gammaproteobacterial lineage SAR86. This pattern indicates an evolutionary pressure towards an increasing dipole in Amt for these clades in deep ocean environments and is predicted to generate stronger electric fields facilitating ammonium acquisition. This pattern of increasing dipole charge with depth was not observed in lineages capable of accessing alternative nitrogen sources, including the abundant alphaproteobacterial clade SAR11. We speculate that competition for ammonium in the deep ocean drives transporter sequence evolution. The low concentration of ammonium in the deep ocean is therefore likely due to rapid uptake by Amts concurrent with decreasing nutrient flux.


Asunto(s)
Compuestos de Amonio , Compuestos de Amonio/metabolismo , Archaea/genética , Proteínas de Transporte de Membrana/genética , Nutrientes , Agua/metabolismo
19.
Microbiol Resour Announc ; 11(5): e0010022, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35499332

RESUMEN

The complete genome sequences of two chemoautotrophic nitrite-oxidizing bacteria of the genus Nitrospina are reported. Nitrospina gracilis strain Nb-211 was isolated from the Atlantic Ocean, and Nitrospina sp. strain Nb-3 was isolated from the Pacific Ocean. We report two highly similar ~3.07-Mbp genome sequences that differ by the presence of ferric iron chelator (siderophore) biosynthesis genes.

20.
Nat Microbiol ; 7(9): 1466-1479, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35970961

RESUMEN

Microbial predators such as choanoflagellates are key players in ocean food webs. Choanoflagellates, which are the closest unicellular relatives of animals, consume bacteria and also exhibit marked biological transitions triggered by bacterial compounds, yet their native microbiomes remain uncharacterized. Here we report the discovery of a ubiquitous, uncultured bacterial lineage we name Candidatus Comchoanobacterales ord. nov., related to the human pathogen Coxiella and physically associated with the uncultured marine choanoflagellate Bicosta minor. We analyse complete 'Comchoano' genomes acquired after sorting single Bicosta cells, finding signatures of obligate host-dependence, including reduction of pathways encoding glycolysis, membrane components, amino acids and B-vitamins. Comchoano encode the necessary apparatus to import energy and other compounds from the host, proteins for host-cell associations and a type IV secretion system closest to Coxiella's that is expressed in Pacific Ocean metatranscriptomes. Interactions between choanoflagellates and their microbiota could reshape the direction of energy and resource flow attributed to microbial predators, adding complexity and nuance to marine food webs.


Asunto(s)
Coanoflagelados , Microbiota , Animales , Bacterias , Humanos , Océano Pacífico , Sistemas de Secreción Tipo IV
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA