Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Chem ; 131: 106326, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563413

RESUMEN

Morin is a vasorelaxant flavonoid, whose activity is ascribable to CaV1.2 channel blockade that, however, is weak as compared to that of clinically used therapeutic agents. A conventional strategy to circumvent this drawback is to synthesize new derivatives differently decorated and, in this context, morin-derivatives able to interact with CaV1.2 channels were found by employing the potential of PLATO in target fishing and reverse screening. Three different derivatives (5a-c) were selected as promising tools, synthesized, and investigated in in vitro functional studies using rat aorta rings and rat tail artery myocytes. 5a-c were found more effective vasorelaxant agents than the naturally occurring parent compound and antagonized both electro- and pharmaco-mechanical coupling in an endothelium-independent manner. 5a, the series' most potent, reduced also Ca2+ mobilization from intracellular store sites. Furthermore, 5a≈5c > 5b inhibited Ba2+ current through CaV1.2 channels. However, compound 5a caused also a concentration-dependent inhibition of KCa1.1 channel currents.


Asunto(s)
Inteligencia Artificial , Bloqueadores de los Canales de Calcio , Canales de Calcio Tipo L , Flavonoides , Vasodilatación , Vasodilatadores , Animales , Ratas , Flavonoides/farmacología , Vasodilatadores/química , Vasodilatadores/farmacología , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo
2.
Bioorg Med Chem ; 59: 116670, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35202967

RESUMEN

Norbormide [5-(α-hydroxy-α-2-pyridylbenzyl)-7-(α-2-pyridylbenzylidene)-5-norbornene-2,3-dicarboximide] (NRB, 1), an existing but infrequently used rodenticide, is known to be uniquely toxic to rats, but relatively harmless to other rodents and mammals. As a vasoactive agent, NRB induces a species-specific vasocontractile effect that is restricted to the peripheral arteries of the rat. Despite the precise mechanisms behind this phenomenon having yet to be fully clarified, it is postulated that the molecular target of NRB could be located within the plasma membrane of rat peripheral artery myocytes (e.g. rat caudal artery myocytes). As such, the primary objective of this study was to develop a fluorescently labelled derivative of NRB to investigate its subcellular distribution/localization in both NRB-sensitive (freshly isolated rat caudal artery myocytes, FIRCAMs) and NRB-insensitive (human hepatic stellate, LX2) cells. Of the examples prepared, lead structure endo-NRB-NBD-bPA subsequently demonstrated retention of the parent toxicant's pharmacological profile (in terms of its ability to induce both a vasocontractile response in rat caudal artery rings in vitro, and a lethal end-point in rats in vivo). Endo-NRB-NBD-bPA was also shown to be significantly less permeable (an integral feature in the design of fluorescent probes targeting cell-surface receptors) to both LX2 cells and FIRCAMs. Disappointingly, no fluorescence could be observed on the plasma membrane of FIRCAMs stained with endo-NRB-NBD-bPA.


Asunto(s)
Colorantes Fluorescentes , Norbornanos , Animales , Colorantes Fluorescentes/metabolismo , Hígado/metabolismo , Mamíferos , Norbornanos/química , Norbornanos/metabolismo , Norbornanos/farmacología , Ratas
3.
Drug Resist Updat ; 59: 100787, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34840068

RESUMEN

Hypoxia, a hallmark of solid tumors, determines the selection of invasive and aggressive malignant clones displaying resistance to radiotherapy, conventional chemotherapy or targeted therapy. The recent introduction of immunotherapy, based on immune checkpoint inhibitors (ICPIs) and chimeric antigen receptor (CAR) T-cells, has markedly transformed the prognosis in some tumors but also revealed the existence of intrinsic or acquired drug resistance. In the current review we highlight hypoxia as a culprit of immunotherapy failure. Indeed, multiple metabolic cross talks between tumor and stromal cells determine the prevalence of immunosuppressive populations within the hypoxic tumor microenvironment and confer upon tumor cells resistance to ICPIs and CAR T-cells. Notably, hypoxia-triggered angiogenesis causes immunosuppression, adding another piece to the puzzle of hypoxia-induced immunoresistance. If these factors concurrently contribute to the resistance to immunotherapy, they also unveil an unexpected Achille's heel of hypoxic tumors, providing the basis for innovative combination therapies that may rescue the efficacy of ICPIs and CAR T-cells. Although these treatments reveal both a bright side and a dark side in terms of efficacy and safety in clinical trials, they represent the future solution to enhance the efficacy of immunotherapy against hypoxic and therapy-resistant solid tumors.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Hipoxia , Neoplasias/patología , Microambiente Tumoral
4.
Mar Drugs ; 20(8)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36005518

RESUMEN

Sesquiterpenes such as leucodin and the labdane-type diterpene manool are natural compounds endowed with remarkably in vitro vasorelaxant and in vivo hypotensive activities. Given their structural similarity with the sesquiterpene lactone (+)-sclareolide, this molecule was selected as a scaffold to develop novel vasoactive agents. Functional, electrophysiology, and molecular dynamics studies were performed. The opening of the five-member lactone ring in the (+)-sclareolide provided a series of labdane-based small molecules, promoting a significant in vitro vasorelaxant effect. Electrophysiology data identified 7 as a CaV1.2 channel blocker and a KCa1.1 channel stimulator. These activities were also confirmed in the intact vascular tissue. The significant antagonism caused by the CaV1.2 channel agonist Bay K 8644 suggested that 7 might interact with the dihydropyridine binding site. Docking and molecular dynamic simulations provided the molecular basis of the CaV1.2 channel blockade and KCa1.1 channel stimulation produced by 7. Finally, 7 reduced coronary perfusion pressure and heart rate, while prolonging conduction and refractoriness of the atrioventricular node, likely because of its Ca2+ antagonism. Taken together, these data indicate that the labdane scaffold represents a valuable starting point for the development of new vasorelaxant agents endowed with negative chronotropic properties and targeting key pathways involved in the pathophysiology of hypertension and ischemic cardiomyopathy.


Asunto(s)
Diterpenos , Hipertensión , Sitios de Unión , Canales de Calcio Tipo L/metabolismo , Diterpenos/farmacología , Humanos , Lactonas , Vasodilatadores/farmacología
5.
Molecules ; 27(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35889386

RESUMEN

Hypertension is a risk factor for cardiovascular diseases, which are the main cause of morbidity and mortality in the world. In the search for new molecules capable of targeting KCa1.1 and CaV1.2 channels, the expression of which is altered in hypertension, the in vitro vascular effects of a series of flavonoids extracted from the heartwoods, roots, and leaves of Dalbergia tonkinensis Prain, widely used in traditional medicine, were assessed. Rat aorta rings, tail artery myocytes, and docking and molecular dynamics simulations were used to analyse their effect on these channels. Formononetin, orobol, pinocembrin, and biochanin A showed a marked myorelaxant activity, particularly in rings stimulated by moderate rather than high KCl concentrations. Ba2+ currents through CaV1.2 channels (IBa1.2) were blocked in a concentration-dependent manner by sativanone, 3'-O-methylviolanone, pinocembrin, and biochanin A, while it was stimulated by ambocin. Sativanone, dalsissooside, and eriodictyol inhibited, while tectorigenin 7-O-[ß-D-apiofuranosyl-(1→6)-ß-D-glucopyranoside], ambocin, butin, and biochanin A increased IKCa1.1. In silico analyses showed that biochanin A, sativanone, and pinocembrin bound with high affinity in target-sensing regions of both channels, providing insight into their potential mechanism of action. In conclusion, Dalbergia tonkinensis is a valuable source of mono- and bifunctional, vasoactive scaffolds for the development of novel antihypertensive drugs.


Asunto(s)
Dalbergia , Hipertensión , Animales , Pueblo Asiatico , Humanos , Extractos Vegetales/farmacología , Ratas , Vasodilatadores/farmacología
6.
Drug Resist Updat ; 52: 100713, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32615525

RESUMEN

Overcoming multidrug resistance represents a major challenge for cancer treatment. In the search for new chemotherapeutics to treat malignant diseases, drug repurposing gained a tremendous interest during the past years. Repositioning candidates have often emerged through several stages of clinical drug development, and may even be marketed, thus attracting the attention and interest of pharmaceutical companies as well as regulatory agencies. Typically, drug repositioning has been serendipitous, using undesired side effects of small molecule drugs to exploit new disease indications. As bioinformatics gain increasing popularity as an integral component of drug discovery, more rational approaches are needed. Herein, we show some practical examples of in silico approaches such as pharmacophore modelling, as well as pharmacophore- and docking-based virtual screening for a fast and cost-effective repurposing of small molecule drugs against multidrug resistant cancers. We provide a timely and comprehensive overview of compounds with considerable potential to be repositioned for cancer therapeutics. These drugs are from diverse chemotherapeutic classes. We emphasize the scope and limitations of anthelmintics, antibiotics, antifungals, antivirals, antimalarials, antihypertensives, psychopharmaceuticals and antidiabetics that have shown extensive immunomodulatory, antiproliferative, pro-apoptotic, and antimetastatic potential. These drugs, either used alone or in combination with existing anticancer chemotherapeutics, represent strong candidates to prevent or overcome drug resistance. We particularly focus on outcomes and future perspectives of drug repositioning for the treatment of multidrug resistant tumors and discuss current possibilities and limitations of preclinical and clinical investigations.


Asunto(s)
Antineoplásicos/farmacología , Reposicionamiento de Medicamentos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Biología Computacional , Simulación por Computador , Descubrimiento de Drogas/métodos , Humanos , Neoplasias/patología
7.
Bioorg Chem ; 105: 104404, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33142229

RESUMEN

Quercetin represents one of the most studied dietary flavonoids; it exerts a panel of pharmacological activities particularly on the cardiovascular system. Stimulation of vascular KCa1.1 channels contributes to its vasorelaxant activity, which is, however, counteracted in part by its concomitant stimulation of CaV1.2 channels. Therefore, several quercetin hybrid derivatives were designed and synthesized to produce a more selective KCa1.1 channel stimulator, then assessed both in silico and in vitro. All the derivatives interacted with the KCa1.1 channel with similar binding energy values. Among the selected derivatives, 1E was a weak vasodilator, though displaying an interesting CaV1.2 channel blocking activity. The lipoyl derivatives 1F and 3F, though showing pharmacological and electrophysiological features similar to those of quercetin, seemed to be more effective as KCa1.1 channel stimulators as compared to the parent compound. The strategy pursued demonstrated how different chemical substituents on the quercetin core can change/invert its effect on CaV1.2 channels or enhance its KCa1.1 channel stimulatory activity, thus opening new avenues for the synthesis of efficacious vasorelaxant quercetin hybrids.


Asunto(s)
Diseño de Fármacos , Ésteres/farmacología , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/antagonistas & inhibidores , Quercetina/farmacología , Animales , Relación Dosis-Respuesta a Droga , Ésteres/síntesis química , Ésteres/química , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Masculino , Estructura Molecular , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Quercetina/síntesis química , Quercetina/química , Ratas , Ratas Wistar , Relación Estructura-Actividad
8.
Acta Pharmacol Sin ; 41(9): 1158-1166, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32132658

RESUMEN

CaV1.2 channel blockers or 5-HT2 receptor antagonists constitute effective therapy for Raynaud's syndrome. A functional link between the inhibition of 5-HT2 receptors and CaV1.2 channel blockade in arterial smooth muscles has been hypothesized. Therefore, the effects of ritanserin, a nonselective 5-HT2 receptor antagonist, on vascular CaV1.2 channels were investigated through electrophysiological, functional, and computational studies. Ritanserin blocked CaV1.2 channel currents (ICa1.2) in a concentration-dependent manner (Kr = 3.61 µM); ICa1.2 inhibition was antagonized by Bay K 8644 and partially reverted upon washout. Conversely, the ritanserin analog ketanserin (100 µM) inhibited ICa1.2 by ~50%. Ritanserin concentration-dependently shifted the voltage dependence of the steady-state inactivation curve to more negative potentials (Ki = 1.58 µM) without affecting the slope of inactivation and the activation curve, and decreased ICa1.2 progressively during repetitive (1 Hz) step depolarizations (use-dependent block). The addition of ritanserin caused the contraction of single myocytes not yet dialyzed with the conventional method. Furthermore, in depolarized rings, ritanserin, and to a lesser extent, ketanserin, caused a concentration-dependent relaxation, which was antagonized by Bay K 8644. Ritanserin and ketanserin were docked at a region of the CaV1.2 α1C subunit nearby that of Bay K 8644; however, only ritanserin and Bay K 8644 formed a hydrogen bond with key residue Tyr-1489. In conclusion, ritanserin caused in vitro vasodilation, accomplished through the blockade of CaV1.2 channels, which was achieved preferentially in the inactivated and/or resting state of the channel. This novel activity encourages the development of ritanserin derivatives for their potential use in the treatment of Raynaud's syndrome.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Fenómenos Electrofisiológicos/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Ritanserina/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/metabolismo , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Animales , Arterias/citología , Sitios de Unión , Canales de Calcio Tipo L/química , Ketanserina/metabolismo , Ketanserina/farmacología , Masculino , Simulación del Acoplamiento Molecular , Músculo Liso Vascular/citología , Unión Proteica , Ratas Wistar , Ritanserina/metabolismo , Antagonistas del Receptor de Serotonina 5-HT2/metabolismo , Vasoconstricción/efectos de los fármacos
9.
Drug Resist Updat ; 46: 100645, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31585396

RESUMEN

Curative cancer therapy remains a major challenge particularly in cancers displaying multidrug resistance (MDR). The MDR phenotype is characterized by cross-resistance to a wide array of anticancer drugs harboring distinct structures and mechanisms of action. The multiple factors involved in mediating MDR may include host factors, tumor factors as well as tumor-host interactions. Among the host factors are genetic variants and drug-drug interactions. The plethora of tumor factors involves decreased drug uptake primarily via impaired influx transporters, increased drug efflux predominantly due to the overexpression of MDR efflux transporters of the ATP-binding cassette superfamily or due to drug efflux mediated by extracellular vesicles (EVs) or drug-loaded lysosomes undergoing exocytosis, deregulation of cell death mechanisms (i.e. anti-apoptotic modalities), enhanced DNA damage repair, epigenetic alterations and/or deregulation of microRNAs. The intratumor heterogeneity and dynamics, along with cancer stem cell plasticity, are important tumor factors. Among the tumor-host interactions are the role of the tumor microenvironment, selective pressure of various stressor conditions and agents, acidic pH and the intracellular transfer of traits mediated by EVs. The involvement of these diverse factors in MDR, highlights the need for precision medicine and real-time personalized treatments of individual cancer patients. In this review, written by a group of researchers from COST Action STRATAGEM "New diagnostic and therapeutic tools against multidrug resistant tumors", we aim to bring together these multidisciplinary and interdisciplinary features of MDR cancers. Importantly, it is becoming increasingly clear that deciphering the molecular mechanisms underlying anticancer drug resistance, will pave the way towards the development of novel precision medicine treatment modalities that are able to surmount distinct and well-defined mechanisms of anticancer drug resistance.


Asunto(s)
Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos/genética , Neoplasias/genética , Antineoplásicos/uso terapéutico , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Interacciones Farmacológicas/genética , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética
10.
Invest New Drugs ; 36(6): 985-998, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29607467

RESUMEN

Chemotherapy for castration-resistant prostate cancer (CRPC) is only temporarily effective due to the onset of chemoresistance. We investigated the efficacy of NO- and H2S-releasing doxorubicins (NitDox and H2SDox) in overcoming drug resistance and evaluated their safety. New and innovative NO- and H2S-releasing doxorubicins (NitDox and H2SDox) showed a good intracellular accumulation and high cytotoxic activity in vitro in an androgen-independent and doxorubicin-resistant DU-145 prostate cancer cell line. Nude mice were subcutaneously injected with 4*106 DU-145 cells and treated once a week for 3 weeks with 5 mg/kg doxorubicin, NitDox, H2SDox or vehicle, i.p. Animal weight, tumor volume, intra-tumoral drug accumulation, apoptosis and the presence of nitrotyrosine and sulfhydryl (SH) groups within the tumor, were evaluated. Cardiotoxicity was assessed by measuring troponin plasma levels and the left ventricular wall thickness. In vivo, NitDox and H2SDox accumulated inside the tumors, significantly reduced tumor volumes by 60%, increased the percentage of apoptotic cells in both the inner and the outer parts of the tumors and the presence of nitrotyrosine and SH groups. Doxorubicin treatment was associated with reduced body weight and cardiotoxicity. On the contrary, NitDox and H2SDox were well tolerated and had a better safety profile. Combining efficacy with reduced cardiovascular side effects, NitDox and H2SDox are promising novel therapeutic agents for reversing chemoresistance in CRCP.


Asunto(s)
Doxorrubicina/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Sulfuro de Hidrógeno/metabolismo , Terapia Molecular Dirigida , Óxido Nítrico/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/efectos adversos , Doxorrubicina/química , Doxorrubicina/farmacología , Ventrículos Cardíacos/patología , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Ratones , Necrosis , Análisis de Supervivencia , Carga Tumoral/efectos de los fármacos , Tirosina/análogos & derivados , Tirosina/metabolismo
11.
J Cardiovasc Pharmacol ; 70(6): 405-410, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28877068

RESUMEN

The P-glycoprotein (P-gp) substrate MC225, at concentrations ≤10 nM, is a valuable radiotracer for positron emission tomography imaging of P-gp function in rats and mice. The aim of this study was to evaluate its potential toxic hazard toward the cardiovascular system through an in-depth analysis of its effects on rat aorta rings, on CaV1.2 channel current (ICa1.2) of A7r5 cells and on Langendorff-perfused rat heart. In aortic rings, MC225 relaxed phenylephrine-induced contraction in a concentration-dependent and endothelium-independent manner, with an IC50 value of about 1 µM. At concentrations ≥3 µM, it antagonized the response to cumulative concentrations of K. MC225, 1 and 10 µM, inhibited ICa1.2 by 15% and 31%, respectively, without affecting either current activation or inactivation kinetics. In Langendorff-perfused rat hearts, only 10 µM MC225 significantly decreased left ventricular pressure and increased coronary perfusion pressure while reducing heart rate and prolonging the cardiac cycle length as well as the atrioventricular conduction time (PQ interval) on the electrocardiogram. Lower concentrations of the drug were ineffective. These findings demonstrate that MC225-induced cardiovascular effects took place at concentrations that are at least 2 orders of magnitude higher than those allowing in vivo measurement of P-gp function. Therefore, MC225 represents a promising positron emission tomography tool for in vivo straightforward P-gp quantification.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Barrera Hematoencefálica/diagnóstico por imagen , Corazón/diagnóstico por imagen , Isoquinolinas , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Tetrahidronaftalenos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Aorta/diagnóstico por imagen , Aorta/metabolismo , Barrera Hematoencefálica/metabolismo , Sistema Cardiovascular/diagnóstico por imagen , Sistema Cardiovascular/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Preparación de Corazón Aislado , Isoquinolinas/metabolismo , Isoquinolinas/farmacología , Masculino , Radiofármacos/metabolismo , Radiofármacos/farmacología , Ratas , Ratas Wistar , Tetrahidronaftalenos/metabolismo , Tetrahidronaftalenos/farmacología , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología
12.
Can J Physiol Pharmacol ; 92(2): 171-4, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24502641

RESUMEN

The effect of freeze-dried red wine (FDRW) on cardiac function and electrocardiogram (ECG) in Langendorff-isolated rat hearts was investigated. FDRW significantly decreased left ventricular pressure and coronary perfusion pressure, the latter being dependent on the activation of both phosphatidylinositol 3-kinase and eNOS. FDRW did not affect the QRS and QT interval in the ECG, although at 56 µg of gallic acid equivalents/mL, it prolonged PQ interval and induced a second-degree atrioventricular block in 3 out of 6 hearts. This is the first study demonstrating that at concentrations resembling a moderate consumption of red wine, FDRW exhibited negative inotropic and coronary vasodilating activity leaving unaltered ECG, whereas at very high concentrations, it induced arrhythmogenic effects.


Asunto(s)
Cardiotónicos/farmacología , Corazón/fisiología , Vino , Animales , Electrocardiografía , Liofilización , Frecuencia Cardíaca , Masculino , Perfusión , Ratas , Ratas Sprague-Dawley
13.
Molecules ; 19(10): 16543-72, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25317581

RESUMEN

As a result of the ring-into-ring conversion of nitrosoimidazole derivatives, we obtained a molecular scaffold that, when properly decorated, is able to decrease inotropy by blocking L-type calcium channels. Previously, we used this scaffold to develop a quantitative structure-activity relationship (QSAR) model, and we used the most potent oxadiazolothiazinone as a template for ligand-based virtual screening. Here, we enlarge the diversity of chemical decorations, present the synthesis and in vitro data for 11 new derivatives, and develop a new 3D-QSAR model with recent in silico techniques. We observed a key role played by the oxadiazolone moiety: given the presence of positively charged calcium ions in the transmembrane channel protein, we hypothesize the formation of a ternary complex between the oxadiazolothiazinone, the Ca2+ ion and the protein. We have supported this hypothesis by means of pharmacophore generation and through the docking of the pharmacophore into a homology model of the protein. We also studied with docking experiments the interaction with a homology model of P-glycoprotein, which is inhibited by this series of molecules, and provided further evidence toward the relevance of this scaffold in biological interactions.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/química , Compuestos Heterocíclicos/química , Oxadiazoles/síntesis química , Oxadiazoles/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Animales , Bloqueadores de los Canales de Calcio/síntesis química , Bloqueadores de los Canales de Calcio/farmacología , Cobayas , Atrios Cardíacos/efectos de los fármacos , Simulación del Acoplamiento Molecular , Músculo Liso/efectos de los fármacos , Relación Estructura-Actividad Cuantitativa , Homología Estructural de Proteína
14.
Cells ; 13(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38727324

RESUMEN

Norbormide (NRB) is a Rattus-selective toxicant, which was serendipitously discovered in 1964 and formerly marketed as an eco-friendly rodenticide that was deemed harmless to non-Rattus species. However, due to inconsistent efficacy and the emergence of second-generation anticoagulants, its usage declined, with registration lapsing in 2003. NRBs' lethal action in rats entails irreversible vasoconstriction of peripheral arteries, likely inducing cardiac damage: however, the precise chain of events leading to fatality and the target organs involved remain elusive. This unique contractile effect is exclusive to rat arteries and is induced solely by the endo isomers of NRB, hinting at a specific receptor involvement. Understanding NRB's mechanism of action is crucial for developing species-selective toxicants as alternatives to the broad-spectrum ones currently in use. Recent research efforts have focused on elucidating its cellular mechanisms and sites of action using novel NRB derivatives. The key findings are as follows: NRB selectively opens the rat mitochondrial permeability transition pore, which may be a factor that contributes to its lethal effect; it inhibits rat vascular KATP channels, which potentially controls its Rattus-selective vasoconstricting activity; and it possesses intracellular binding sites in both sensitive and insensitive cells, as revealed by fluorescent derivatives. These studies have led to the development of a prodrug with enhanced pharmacokinetic and toxicological profiles, which is currently undergoing registration as a novel efficacious eco-sustainable Rattus-selective toxicant. The NRB-fluorescent derivatives also show promise as non-toxic probes for intracellular organelle labelling. This review documents in more detail these developments and their implications.


Asunto(s)
Rodenticidas , Animales , Ratas , Rodenticidas/toxicidad , Humanos , Vasoconstricción/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo
15.
Food Chem ; 444: 138684, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38359701

RESUMEN

A research platform for food authentication was set up by combining stable isotope ratio analysis, metabolomics by gas and liquid mass-spectrometry and NMR investigations, chemometric analyses for food excellences. This multi-analytical approach was tested on samples of elephant garlic (Allium ampeloprasum L.), a species belonging to the same genus of common garlic (Allium ampeloprasum L.), mainly produced in southern Tuscany-(Allium ampeloprasum). The isotopic composition allowed the product to be geographically characterized. Flavonoids, like (+)-catechin, cinnamic acids, quercetin glycosides were identified. The samples showed also a significant amount of dipeptides, sulphur-containing metabolites and glutathione, the latter of which could be considered a molecular marker of the analyzed elephant garlic. For nutraceutical profiling to reach quality labels, extracts were investigated in specific biological assays, displaying interesting vasorelaxant properties in rat aorta by mediating nitric oxide release from the endothelium and exhibited positive inotropic and negative chronotropic effects in rat perfused heart.


Asunto(s)
Allium , Ajo , Animales , Ratas , Ajo/química , Allium/química , Cebollas/química , Antioxidantes/análisis , Suplementos Dietéticos , Italia
16.
Antioxidants (Basel) ; 12(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36978870

RESUMEN

An ultrasound-assisted extraction method, employing ethanol and water as solvents at low temperature (30 °C) and reduced time (15 min), was proposed to extract bioactive molecules from different cultivars (Magliocco Canino, Magliocco Rosato, Gaglioppo, and Nocera Rosso) of wine lees. All the extract yields were evaluated and their contents of phenolic acids, flavonoids, and total polyphenols were determined by means of colorimetric assays and high-performance liquid chromatography coupled with diode-array detection (HPLC-DAD) and Fourier transform infrared (FTIR) techniques. Radical scavenging assays were performed and the Magliocco Canino extracted with a hydroalcoholic mixture returned the best results both against ABTS (0.451 mg mL-1) and DPPH (0.395 mg mL-1) radicals. The chemometric algorithms principal component analysis (PCA) and partial least square regression (PLS) were used to process the data obtained from all qualitative-quantitative sample determinations with the aim of highlighting data patterns and finding possible correlations between composition and antioxidant features of the different wine lees cultivars and the extraction procedures. Wine lees from Magliocco Canino and Magliocco Rosato were found to be the best vegetable matrices in terms of metabolite content and antioxidant properties. The components extracted with alcoholic or hydroalcoholic solvents, specifically (-)-epigallocatechin gallate, chlorogenic acid, and trans-caftaric acid, were found to be correlated with the antioxidant capacity of the extracts. Multivariate data processing was able to identify the compounds related to the antioxidant features. Two PLS models were optimized by using their concentration levels to predict the IC50 values of the extracts in terms of DPPH and ABTS with high values of correlation coefficient R2, 0.932 and 0.824, respectively, and a prediction error lower than 0.07. Finally, cellular (SH-SY5Y cells) antioxidant assays were performed on the best extract (the hydroalcoholic extract of Magliocco Canino cv) to confirm its biological performance against radical species. All these recorded data strongly outline the aptness of valorizing wine lees as a valuable source of antioxidants.

17.
Eur J Med Chem ; 246: 114952, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36462439

RESUMEN

The neuroprotective performance against neuroinflammation of the endocannabinoid system (ECS) can be remarkably improved by indirect stimulation mediated by the pharmacological inhibition of the key ECS catabolic enzyme fatty acid amide hydrolase (FAAH). Based on our previous works and aiming to discover new selective FAAH inhibitors , we herein reported a new series of carbamate-based FAAH inhibitors (4a-t) which showed improved drug disposition properties compared to the previously reported analogues 2a-b. The introduction of ionizable functions allowed us to obtain new FAAH inhibitors of nanomolar potency characterized by good water solubility and chemical stability at physiological pH. Interesting structure-activity relationships (SARs), deeply analyzed by molecular docking and molecular dynamic (MD) simulations, were obtained. All the newly developed inhibitors showed an excellent selectivity profile evaluated against monoacylglycerol lipase and cannabinoid receptors. The reversible mechanism of action was determined by a rapid dilution assay. Absence of toxicity was confirmed in mouse fibroblasts NIH3T3 (for compounds 4e, 4g, 4n-o, and 4s) and in human astrocytes cell line 1321N1 (for compounds 4e, 4n, and 4s). The absence of undesired cardiac effects was also confirmed for compound 4n. Selected analogues (compounds 4e, 4g, 4n, and 4s) were able to reduce oxidative stress in 1321N1 astrocytes and exhibited notable neuroprotective effects when tested in an ex vivo model of neuroinflammation.


Asunto(s)
Inhibidores Enzimáticos , Enfermedades Neuroinflamatorias , Ratones , Animales , Humanos , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Células 3T3 NIH , Amidohidrolasas/metabolismo , Endocannabinoides/metabolismo
18.
J Food Sci ; 88(12): 5324-5338, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37961008

RESUMEN

Bio-based products are nowadays useful tools able to affect the productivity and quality of conventionally cultivated crops. Several bio-based products are currently on the market; one of the newest and most promising is the wood distillate (WD) derived from the pyrolysis process of waste biomass after timber. Its foliar application has been widely investigated and shown to promote the antioxidant profile of cultivated crops. WD was used here as additive for the cultivation of tomato (Solanum lycopersicum L.) plants. The application improved quality (chemical) parameters, minerals, polyphenols, and lycopene contents of tomato fruits. The extracts of WD-treated and untreated tomatoes have been chemically and biologically characterized. The 1 H-NMR and ESI-mass spectrometry analyses of the extracts revealed the presence of different fatty acids, amino acids and sugars. In particular, the WD-treated tomatoes showed the presence of pyroglutamic acid and phloridzin derivatives, but also dihydrokaempferol, naringenin glucoside, cinnamic acid, and kaempferol-3-O-glucoside. When tested in cells, the extracts showed a promising anti-inflammatory profile in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Furthermore, the extracts displayed a slight vasorelaxant activity on rat aorta rings (either endothelium-denuded or endothelium-intact) pre-contracted with phenylephrine or potassium chloride. PRACTICAL APPLICATION: Wood distillate has been used for tomato plant growth. Tomatoes showed improved nutritional parameters, and their extracts displayed antioxidant and anti-inflammatory activities.


Asunto(s)
Antioxidantes , Solanum lycopersicum , Antioxidantes/química , Madera/química , Licopeno/análisis , Frutas/química , Antiinflamatorios/análisis
19.
J Clin Pharmacol ; 62(5): 646-655, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34802170

RESUMEN

This study aimed to characterize adverse drug reactions (ADRs) to hydroxychloroquine in the setting of COVID-19, occurring in Italy in the period March to May 2020. The analysis of the combination therapy with azithromycin or/and lopinavir/ritonavir as well as a comparison with ADRs reported throughout 2019 was performed. ADRs collected by the Italian National Network of Pharmacovigilance were analyzed for their incidence, seriousness, outcome, coadministered drugs, and Medical Dictionary for Regulatory Activities classification. A total of 306 reports were gathered for the quarter of 2020: 54% nonserious and 46% serious, and half of the latter required either the hospitalization or its prolongation. However, most of them were either completely recovered (26%) or in the process of recovery (45%), except for 9 fatal cases. Throughout 2019, 38 reports were collected, 53% nonserious and 47% serious, but no deaths had been reported. Diarrhea, prolonged QT interval, and hypertransaminasemia were the most frequently ADRs reported in 2020, significantly higher than 2019 and specific for COVID-19 subjects treated with hydroxychloroquine. The logistic regression analyses demonstrated that the likelihood of serious ADRs, QT prolongation, and diarrhea significantly increased with hydroxychloroquine dosage. Coadministration of lopinavir/ritonavir and hydroxychloroquine showed a positive correlation with diarrhea and hypertransaminasemia and a negative relationship with the ADR seriousness. The combination therapy with azithromycin was another independent predictor of a serious ADR. Off-label use of hydroxychloroquine for COVID-19, alone or in combination regimens, was associated with increased incidence and/or seriousness of specific ADRs in patients with additional risk factors caused by the infection.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Síndrome de QT Prolongado , Azitromicina/efectos adversos , Diarrea/inducido químicamente , Humanos , Hidroxicloroquina/efectos adversos , Síndrome de QT Prolongado/inducido químicamente , Lopinavir/efectos adversos , Uso Fuera de lo Indicado , Farmacovigilancia , Ritonavir/efectos adversos
20.
Eur J Pharmacol ; 918: 174778, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35093322

RESUMEN

Quercetin, a flavonoid abundantly present in the Mediterranean diet, is considered a vasodilator despite its recognized capability to stimulate vascular CaV1.2 channel current (ICa1.2). The present study was undertaken to assess its possible vasocontractile activity. Functional and electrophysiology experiments were performed in vitro on rat aorta rings and tail artery myocytes along with an in-depth molecular modelling analysis. The CaV1.2 channel stimulator (S)-(-)-methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl) pyridine-5-carboxylate (Bay K 8644) was used as reference compound. Quercetin and Bay K 8644 caused a significant leftward shift of KCl concentration-response curve. Neither agent affected basal muscle tone, though in rings pre-treated with thapsigargin or 15 mM KCl they caused a strong, concentration-dependent contraction. Both quercetin and Bay K 8644 potentiated the response to Ca2+ in weakly depolarised rings. At high KCl concentrations, however, quercetin caused vasorelaxation. While Bay K 8644 stimulated ICa1.2, this effect being sustained with time, quercetin-induced stimulation was transient, although the molecule in solution underwent only marginal oxidation. Quercetin transient stimulation was not affected by pre-treatment with isoprenaline, sodium nitroprusside, or dephostatin; however, it converted to a sustained one in myocytes pre-incubated with Gö6976. Classical molecular dynamics simulations revealed that quercetin and Bay K 8644 formed hydrogen bonds with target sensing residues of CaV1.2 channel favouring the inactivated conformation. In conclusion, quercetin-induced stimulation of ICa1.2 promoted vasocontraction when Ca2+ buffering function of sarcoplasmic reticulum was impaired and/or smooth muscle cell membrane was moderately depolarised, as it may occur under certain pathological conditions.


Asunto(s)
Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Arterias , Canales de Calcio Tipo L/metabolismo , Contracción Muscular/efectos de los fármacos , Músculo Liso Vascular , Quercetina/farmacología , Vasodilatación/efectos de los fármacos , Animales , Antioxidantes/farmacología , Arterias/efectos de los fármacos , Arterias/patología , Arterias/fisiología , Agonistas de los Canales de Calcio/farmacología , Fenómenos Electrofisiológicos/efectos de los fármacos , Simulación de Dinámica Molecular , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiología , Ratas , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA