Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Ann Rheum Dis ; 82(6): 799-808, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36858822

RESUMEN

OBJECTIVES: To identify the arthritogenic B cell epitopes of glucose-6-phosphate isomerase (GPI) and their association with rheumatoid arthritis (RA). METHODS: IgG response towards a library of GPI peptides in patients with early RA, pre-symptomatic individuals and population controls, as well as in mice, were tested by bead-based multiplex immunoassays and ELISA. Monoclonal IgG were generated, and the binding specificity and affinity were determined by ELISA, gel size exclusion chromatography, surface plasma resonance and X-ray crystallography. Arthritogenicity was investigated by passive transfer experiments. Antigen-specific B cells were identified by peptide tetramer staining. RESULTS: Peptide GPI293-307 was the dominant B cell epitope in K/BxN and GPI-immunised mice. We could detect B cells and low levels of IgM antibodies binding the GPI293-307 epitopes, and high affinity anti-GPI293-307 IgG antibodies already 7 days after GPI immunisation, immediately before arthritis onset. Transfer of anti-GPI293-307 IgG antibodies induced arthritis in mice. Moreover, anti-GPI293-307 IgG antibodies were more frequent in individuals prior to RA onset (19%) than in controls (7.5%). GPI293-307-specific antibodies were associated with radiographic joint damage. Crystal structures of the Fab-peptide complex revealed that this epitope is not exposed in native GPI but requires conformational change of the protein in inflamed joint for effective recognition by anti-GPI293-307 antibodies. CONCLUSIONS: We have identified the major pathogenic B cell epitope of the RA-associated autoantigen GPI, at position 293-307, exposed only on structurally modified GPI on the cartilage surface. B cells to this neo-epitope escape tolerance and could potentially play a role in the pathogenesis of RA.


Asunto(s)
Artritis Reumatoide , Epítopos de Linfocito B , Ratones , Animales , Glucosa-6-Fosfato Isomerasa , Formación de Anticuerpos , Autoanticuerpos , Cartílago/metabolismo , Inmunoglobulina G
2.
Immunol Rev ; 269(1): 228-47, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26683156

RESUMEN

The current review on the function of neutrophil cytosolic factor 1 (NCF1) and induced reactive oxygen species (ROS) is based on a genetic search for the major genes controlling autoimmune inflammatory disorders. Surprisingly, the disease-promoting allele determined a lower ROS response and was therefore in complete contrast to the prevailing dogma. Once cloned, it opened the possibility to dissect this complex field from a new angle and with the possibilities to study the role of ROS in vivo. We found that NCF1 and NADPH oxidase 2 (NOX2) complex-derived ROS is an important regulator of several chronic inflammatory disorders by using models for rheumatoid arthritis, multiple sclerosis, psoriasis and psoriasis arthritis, gout, and lupus. ROS could therefore affect many different types of diseases and the common denominator seems to be that ROS regulate macrophages, which prevents inflammation from going chronic. The role of ROS is currently changing from being seen as toxic agents that will promote inflammation toward a more complex view with ROS as crucial regulators of immune and inflammatory pathways.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Inflamación/inmunología , NADPH Oxidasas/metabolismo , Animales , Enfermedades Autoinmunes/genética , Predisposición Genética a la Enfermedad , Humanos , Inflamación/genética , Glicoproteínas de Membrana/metabolismo , NADPH Oxidasa 2 , NADPH Oxidasas/genética , Oxidación-Reducción , Polimorfismo Genético , Especies Reactivas de Oxígeno/metabolismo
3.
Adv Sci (Weinh) ; 11(23): e2401513, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602454

RESUMEN

Transgenic mice expressing human major histocompatibility complex class II (MHCII) risk alleles are widely used in autoimmune disease research, but limitations arise due to non-physiologic expression. To address this, physiologically relevant mouse models are established via knock-in technology to explore the role of MHCII in diseases like rheumatoid arthritis. The gene sequences encoding the ectodomains are replaced with the human DRB1*04:01 and 04:02 alleles, DRA, and CD74 (invariant chain) in C57BL/6N mice. The collagen type II (Col2a1) gene is modified to mimic human COL2. Importantly, DRB1*04:01 knock-in mice display physiologic expression of human MHCII also on thymic epithelial cells, in contrast to DRB1*04:01 transgenic mice. Humanization of the invariant chain enhances MHCII expression on thymic epithelial cells, increases mature B cell numbers in spleen, and improves antigen presentation. To validate its functionality, the collagen-induced arthritis (CIA) model is used, where DRB1*04:01 expression led to a higher susceptibility to arthritis, as compared with mice expressing DRB1*04:02. In addition, the humanized T cell epitope on COL2 allows autoreactive T cell-mediated arthritis development. In conclusion, the humanized knock-in mouse faithfully expresses MHCII, confirming the DRB1*04:01 alleles role in rheumatoid arthritis and being also useful for studying MHCII-associated diseases.


Asunto(s)
Alelos , Antígenos de Diferenciación de Linfocitos B , Artritis Reumatoide , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Antígenos de Histocompatibilidad Clase II , Ratones Endogámicos C57BL , Ratones Transgénicos , Animales , Ratones , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Antígenos de Diferenciación de Linfocitos B/genética , Antígenos de Diferenciación de Linfocitos B/inmunología , Humanos , Técnicas de Sustitución del Gen/métodos , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Artritis Experimental/genética , Artritis Experimental/inmunología , Cadenas HLA-DRB1/genética , Cadenas HLA-DRB1/inmunología , Colágeno Tipo II/genética , Colágeno Tipo II/inmunología
4.
Arthritis Rheumatol ; 75(5): 856-863, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36409578

RESUMEN

OBJECTIVE: To investigate potential associations between B cell-related immunologic changes and development of inflammatory arthritis (IA) after treatment with immune checkpoint inhibitors (ICIs). METHODS: Patients who developed ICI-induced IA (ICI-IA) and patients who did not develop immune-related adverse events (non-IRAE) after receiving ICIs to treat metastatic melanoma were consecutively recruited. Blood samples were collected at the time of ICI-IA occurrence and at different time points during treatment. Peripheral blood B cell subsets during ICI treatment were analyzed by flow cytometry. Rheumatoid factor, anti-citrullinated protein antibodies, and antibodies against joint-related proteins were measured. RESULTS: Proportions of CD19+ B cells were higher in patients with ICI-IA (n = 7) compared to patients with non-IRAE (n = 15) (median 11.7% [interquartile range (IQR) 9.7-16.2%] versus 8.1% [IQR 5.7-11.0%]; P = 0.03). The proportion and absolute numbers of transitional CD19+CD10+CD24high CD38high B cells were increased in patients with ICI-IA compared to non-IRAE patients (median 8.1% [IQR 4.9-12.1%] versus 3.6% [IQR 1.9-4.9%]; median 10.7 cells/µl [IQR 8.9-19.6] versus 4.4 cells/µl [IQR 2.3-6.6]; P < 0.01 for both). In addition, higher levels of transitional B cells were associated with development of ICI-IA (odds ratio 2.25 [95% confidence interval 1.03-4.9], P = 0.04). Transitional B cells increased before the onset of overt ICI-IA and decreased between the active and quiescent stages of ICI-IA (P = 0.02). Autoantibodies to type II collagen epitopes were detected in up to 43% of ICI-IA patients compared to none of the non-IRAE patients (P = 0.02). CONCLUSION: Development of ICI-IA is accompanied by an increase in transitional B cells and by production of autoantibodies to joint-related proteins. Monitoring of B cell-driven abnormalities upon ICI treatment may help earlier recognition of ICI-IA.


Asunto(s)
Artritis , Melanoma , Humanos , Autoanticuerpos , Células Precursoras de Linfocitos B , Artritis/etiología , Melanoma/tratamiento farmacológico , Inmunoterapia/efectos adversos
5.
Arthritis Rheumatol ; 75(7): 1110-1119, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36718635

RESUMEN

OBJECTIVE: This study was undertaken to develop and characterize a multiplex immunoassay for detection of autoantibodies against peptides derived from proteins known to play a role in development of arthritis and that are also expressed in joints. METHODS: We selected peptides from the human counterpart of proteins expressed in the joints, based on mouse models that showed these to be targeted by pathogenic or regulatory antibodies in vivo. Using bead-based flow immunoassays measuring IgG antibodies, we selected triple helical or cyclic peptides, containing the epitopes, to avoid collinear reactivity. We characterized the analytical performance of the immunoassay and then validated it in 3 independent rheumatoid arthritis (RA) cohorts (n = 2,110), Swedish age- and sex-matched healthy controls, and patients with osteoarthritis (OA), patients with psoriatic arthritis (PsA), and patients with systemic lupus erythematosus (SLE). RESULTS: Screening assays showed 5 peptide antigens that discriminated RA patients from healthy controls with 99% specificity (95% confidence interval [CI] 98-100%). In our validation studies, we reproduced the discriminatory capacity of the autoantibodies in 2 other RA cohorts, showing that the autoantibodies had high discriminatory capacity for RA versus OA, PsA, and SLE. The novel biomarkers identified 22.5% (95% CI 19-26%) of early RA patients seronegative for anti-cyclic citrullinated peptide and rheumatoid factor. The usefulness of the biomarkers in identifying seronegative RA patients was confirmed in validation studies using 2 independent cohorts of RA patients and cohorts of patients with OA, PsA, and SLE. CONCLUSION: A multiplex immunoassay with peptides from disease-related proteins in joints was found to be useful for detection of specific autoantibodies in RA serum. Of note, this immunoassay had high discriminatory capacity for early seronegative RA.


Asunto(s)
Artritis Psoriásica , Artritis Reumatoide , Lupus Eritematoso Sistémico , Osteoartritis , Animales , Ratones , Humanos , Autoanticuerpos , Artritis Psoriásica/diagnóstico , Péptidos Cíclicos , Péptidos , Biomarcadores , Osteoartritis/diagnóstico
6.
Mediators Inflamm ; 2012: 730469, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22529530

RESUMEN

Extracellular superoxide dismutase (SOD3), an enzyme mediating dismutation of superoxide into hydrogen peroxide, has been shown to reduce inflammation by inhibiting macrophage migration into injured tissues. In inflamed tissues, superoxide is produced by the phagocytic NOX2 complex, which consists of the catalytic subunit NOX2 and several regulatory subunits (e.g., NCF1). To analyze whether SOD3 can regulate inflammation in the absence of functional NOX2 complex, we injected an adenoviral vector overexpressing SOD3 directly into the arthritic paws of Ncf1(∗/∗) mice with collagen-induced arthritis. SOD3 reduced arthritis severity in both oxidative burst-deficient Ncf1(∗/∗) mice and also in wild-type mice. The NOX2 complex independent anti-inflammatory effect of SOD3 was further characterized in peritonitis, and SOD3 was found to reduce macrophage infiltration independently of NOX2 complex functionality. We conclude that the SOD3-mediated anti-inflammatory effect on arthritis and peritonitis operates independently of NOX2 complex derived oxidative burst.


Asunto(s)
Artritis Experimental/metabolismo , Fagocitos/citología , Superóxido Dismutasa/metabolismo , Adenoviridae/metabolismo , Animales , Células COS , Macrófagos/citología , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , NADPH Oxidasa 2 , NADPH Oxidasas/metabolismo , Peritonitis/metabolismo , Fagocitosis , Ratas , Estallido Respiratorio , Transducción de Señal
7.
Commun Biol ; 5(1): 449, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551269

RESUMEN

Common infections and polysaccharides, from bacteria and yeasts, could trigger psoriasis and psoriatic arthritis (PsA), and possibly rheumatoid arthritis (RA). The objective of this study was to investigate the effects of ß-glucan polysaccharides in the effector phase of arthritis and as regulators of psoriasis and PsA-like symptoms in mice. Collagen antibody induced arthritis was studied as a model of RA and mannan-induced psoriasis (MIP) was used as model for psoriasis and PsA, using mice with a mutation of Ncf1 on the B10.Q genetic background, making them highly disease susceptible. The mice were exposed to three common variants: 1,6-ß-glucan, 1,3-ß-glucan and 1,3-1,6-ß-glucan. These ß-glucans down-regulated disease in mice if administered simultaneously, before or after mannan. Interestingly, the protection was macrophage mannose receptor (MMR/CD206) dependent with a more pronounced protection long-term than short-term. The number of resident peritoneal macrophages decreased after in vivo challenge with ß-glucan and mannan compared to mannan alone, whereas the numbers of infiltrating cells correspondingly increased, further indicating macrophages as key for ß-glucan mediated regulation. At the doses tested, ß-glucans could not induce arthritis, psoriasis or PsA in wild-type mice. However, ß-glucans could ameliorate the PsA-like symptoms representing a new unforeseen possibility to explore for future clinical treatment.


Asunto(s)
Artritis , Psoriasis , beta-Glucanos , Animales , Glucanos , Humanos , Inflamación/tratamiento farmacológico , Masculino , Mananos/farmacología , Ratones , Polisacáridos/farmacología , Antígeno Prostático Específico
8.
Mediators Inflamm ; 2011: 127587, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21547253

RESUMEN

The role of dual specificity phosphatase 1 (DUSP1) in inducible nitric oxide synthase (iNOS) expression in A549 human pulmonary epithelial cells, J774 mouse macrophages and primary mouse bone marrow-derived macrophages (BMMs) was investigated. iNOS expression was induced by a cytokine mixture (TNF, IFNγ and IL-1ß) in A549 cells and by LPS in J774 cells, and it was inhibited by p38 MAPK inhibitors SB202190 and BIRB 796. Stimulation with cytokine mixture or LPS enhanced also DUSP1 expression. Down-regulation of DUSP1 by siRNA increased p38 MAPK phosphorylation and iNOS expression in A549 and J774 cells. In addition, LPS-induced iNOS expression was enhanced in BMMs from DUSP1((-/-)) mice as compared to that in BMMs from wild-type mice. The results indicate that DUSP1 suppresses iNOS expression by limiting p38 MAPK activity in human and mouse cells. Compounds that enhance DUSP1 expression or modulate its function may be beneficial in diseases complicated with increased iNOS-mediated NO production.


Asunto(s)
Fosfatasa 1 de Especificidad Dual/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Línea Celular , Citocinas/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Humanos , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , ARN Interferente Pequeño/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética
9.
Pulm Pharmacol Ther ; 22(3): 167-76, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19073274

RESUMEN

Oligodeoxynucleotide (ODN) sequences containing unmethylated cytidine phosphate guanosine (CpG) motifs prevalent in bacterial DNA attenuate allergic lung inflammation in experimental models of asthma but failed to inhibit eosinophilia and improve lung function in patients with asthma. Bacterial respiratory tract infections exacerbate asthma in humans. Increased eosinophil survival is a critical factor leading to persistent eosinophilic airway inflammation. Apoptosis is regarded as a key mechanism in the resolution of eosinophilic inflammation. The aim of this study was to investigate the effects of bacterial DNA and CpG ODNs on human eosinophil apoptosis in vitro and to elucidate the signalling pathway. Eosinophils were isolated from human peripheral blood by CD16- or CD16-, CD19- and CD304-negative selection. Apoptosis was determined by flow cytometric analysis of relative DNA content, Annexin-V staining and/or morphological analysis. Toll-like receptor 9 (TLR9) expression was studied by using western blotting and intracellular flow cytometry. Bacterial DNA and phosphorothioate-modified CpG ODNs, but not vertebrate DNA, were found to delay spontaneous eosinophil apoptosis. The effect of CpG ODNs was dependent on endosomal acidification and reversed by inhibitory ODN, which suggests involvement of TLR9 pathway. Furthermore, we demonstrated TLR9 expression in eosinophils derived from both atopic and healthy donors. Non-CpG ODNs had occasionally parallel but less profound effect on eosinophil apoptosis, which was not dependent on endosomal acidification. The anti-apoptotic effect of CpG ODNs was dependent on phosphatidylinositol 3-kinase (PI3K) and nuclear factor-kappaB (NF-kappaB) but not mitogen-activated protein kinases (MAPKs) as determined by inhibitor studies. Although our results suggest CpG-dependent involvement of TLR9 in the action of phosphorothioate-modified ODNs, we interestingly found that the anti-apoptotic action of native bacterial DNA in eosinophils is not dependent on unmethylated CpG motifs. This suggests that bacterial DNA contains a currently unknown recognition structure lacking from vertebrate DNA. Bacterial DNA-mediated suppression of eosinophil apoptosis is a novel mechanism for exacerbation of eosinophilic lung inflammation associated with bacterial respiratory tract infection.


Asunto(s)
Apoptosis/efectos de los fármacos , ADN Bacteriano/farmacología , Eosinófilos/efectos de los fármacos , Anexina A5/metabolismo , Antígenos CD19/análisis , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/fisiología , Células Cultivadas , Colorantes , Islas de CpG , Metilación de ADN , ADN Bacteriano/análisis , Endosomas/efectos de los fármacos , Eosinófilos/patología , Fluoresceína-5-Isotiocianato/metabolismo , Colorantes Fluorescentes , Glucocorticoides/farmacología , Humanos , Subunidad alfa del Receptor de Interleucina-3/análisis , Oligonucleótidos/farmacología , Neumonía/patología , Propidio , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 9/efectos de los fármacos , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/fisiología
10.
J Pharmacol Exp Ther ; 324(2): 858-66, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18039960

RESUMEN

Orazipone [OR-1384; 3-[4-(methylsulfonyl)benzylidene]pentane-2,4-dione] is a novel sulfhydryl-modulating compound that has anti-inflammatory properties in experimental models of asthma and inflammatory bowel disease. In inflammation, inducible nitricoxide synthase (iNOS) generates NO, which modulates the immune response. Compounds that inhibit iNOS expression or iNOS activity possess anti-inflammatory effects. In the present study, we examined the effects of orazipone and its derivative OR-1958 [3-[3-chlorine-4-(methylsulfonyl)benzylidene]pentane-2,4-dione] on iNOS expression and NO production in J774 macrophages stimulated by bacterial lipopolysaccharide (LPS) and in human alveolar epithelial cells activated by proinflammatory cytokines. Protein expression and nuclear translocation of transcription factors were measured by Western blot. iNOS mRNA expression was determined by quantitative reverse transcription-polymerase chain reaction and iNOS mRNA stability by actinomycin D assay. iNOS promoter activity was studied in a cell line expressing luciferase under the control of iNOS promoter. Orazipone and its derivative OR-1958 but not its nonthiol-modulating analog inhibited iNOS expression and NO production in a concentration-dependent manner. Orazipone decreased LPS-induced iNOS mRNA expression, but the decay of iNOS mRNA was not affected. Orazipone extensively prevented LPS-induced activation of nuclear factor kappaB (NF-kappaB) and signal transducer and activator of transcription (STAT) 1, which are important transcription factors for iNOS. In agreement, human iNOS promoter activity was inhibited by orazipone. In conclusion, orazipone decreased activation of inflammatory transcription factors NF-kappaB and STAT1, and expression of iNOS in cells exposed to inflammatory stimuli. The thiolmodulating property seems to be critical in mediating the antiinflammatory effects of orazipone.


Asunto(s)
FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Óxido Nítrico/biosíntesis , Factor de Transcripción STAT1/metabolismo , Compuestos de Sulfhidrilo/farmacología , Transcripción Genética/fisiología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/genética , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Factor de Transcripción STAT1/antagonistas & inhibidores , Factor de Transcripción STAT1/genética , Compuestos de Sulfhidrilo/química , Transcripción Genética/efectos de los fármacos
11.
Int Immunopharmacol ; 8(1): 100-8, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18068105

RESUMEN

Bacterial endotoxin is a potent inducer of inflammatory response, including the induction of inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production, and the expression of cyclo-oxygenase (COX)-2 and tumor necrosis factor (TNF)-alpha in inflammatory cells. In the present study, we investigated the effects of pharmacological inhibition of Janus kinase (JAK) 3 on the production of these proinflammatory molecules in macrophages exposed to bacterial endotoxin (lipopolysaccharide; LPS). JAK3 inhibitors WHI-P154 (4-(3'-bromo-4'-hydroxylphenyl)-amino-6,7-dimethoxyquinazoline) and its derivative WHI-P131 inhibited LPS-induced iNOS expression and NO production in a dose-dependent manner. WHI-P154 inhibited the activation of signal transducer and activator of transcription (STAT) 1 and the expression of iNOS mRNA but it had no effect on iNOS mRNA decay when determined by actinomycin D assay. The JAK3 inhibitor had no effect on COX-2 expression, and TNF-alpha production was slightly inhibited only at higher drug concentrations (30 microM). In addition, WHI-P154 inhibited iNOS expression and NO production also in human epithelial cells. Our results suggest that JAK3 inhibition modulates human and murine iNOS expression and NO production in response to inflammatory stimuli.


Asunto(s)
Ciclooxigenasa 2/biosíntesis , Janus Quinasa 3/antagonistas & inhibidores , Lipopolisacáridos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Quinazolinas/farmacología , Factor de Necrosis Tumoral alfa/biosíntesis , Línea Celular , Ciclooxigenasa 2/genética , Regulación hacia Abajo/inmunología , Humanos , Interferón gamma/antagonistas & inhibidores , Interferón gamma/fisiología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Inhibidores de Proteínas Quinasas/farmacología , Factor de Transcripción STAT1/antagonistas & inhibidores , Factor de Transcripción STAT1/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/genética
12.
Front Immunol ; 9: 114, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29467756

RESUMEN

The injection of mannan into mice can result in the development of psoriasis (Ps) and psoriatic arthritis (PsA), whereas co-injection with antibodies toward collagen type II leads to a chronic rheumatoid-like arthritis. The critical event in all these diseases is mannan-mediated activation of macrophages, causing more severe disease if the macrophages are deficient in neutrophil cytosolic factor 1 (Ncf1), i.e., lack the capacity to make a reactive oxygen species (ROS) burst. In this study, we investigated the role of one of the receptors binding mannan; the macrophage mannose receptor (MR, CD206). MR is a C-type lectin present on myeloid cells and lymphatics. We found that mice deficient in MR expression had more severe mannan-induced Ps, PsA as well as rheumatoid-like arthritis. Interestingly, the MR-mediated protection was partly lost in Ncf1 mutated mice and was associated with an type 2 macrophage expansion. In conclusion, these results show that MR protects against a pathogenic inflammatory macrophage response induced by mannan and is associated with induction of ROS.


Asunto(s)
Artritis Reumatoide/inmunología , Lectinas Tipo C/inmunología , Lectinas de Unión a Manosa/inmunología , Psoriasis/inmunología , Receptores de Superficie Celular/inmunología , Animales , Artritis Reumatoide/inducido químicamente , Modelos Animales de Enfermedad , Femenino , Lectinas Tipo C/genética , Masculino , Mananos , Receptor de Manosa , Lectinas de Unión a Manosa/genética , Ratones Noqueados , NADPH Oxidasas/genética , NADPH Oxidasas/inmunología , Psoriasis/inducido químicamente , Especies Reactivas de Oxígeno/inmunología , Receptores de Superficie Celular/genética
13.
Arthritis Rheumatol ; 70(8): 1343-1353, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29513929

RESUMEN

OBJECTIVE: To develop a new chronic rheumatoid arthritis model that is driven by the innate immune system. METHODS: Injection of a cocktail of 4 monoclonal antibodies against type II collagen, followed on days 5 and 60 by intraperitoneal injections of mannan (from Saccharomyces cerevisiae), was used to induce development of chronic arthritis in B10.Q mice. The role of the innate immune system as compared to the adaptive immune system in this arthritis model was investigated using genetically modified mouse strains. RESULTS: A new model of chronic relapsing arthritis was characterized in B10.Q mice, in which a persistently active, chronic disease was found. This relapsing disease was driven by macrophages lacking the ability to mount a reactive oxygen species response against pathogens, and was associated with the classical/alternative pathway, but not the lectin pathway, of complement activation. The disease was independent of Fcγ receptor type III, and also independent of the activity of adaptive immune cells (B and T cells), indicating that the innate immune system, involving complement activation, could be the sole driver of chronicity. CONCLUSION: Chronic active arthritis can be driven innately by macrophages without the involvement of T and B cells in the adaptive immune system.


Asunto(s)
Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Inmunidad Innata/inmunología , Macrófagos/inmunología , Linfocitos T/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Linfocitos B/inmunología , Colágeno Tipo II/inmunología , Modelos Animales de Enfermedad , Ratones
14.
Antioxid Redox Signal ; 27(18): 1473-1490, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-28467721

RESUMEN

AIMS: Neutrophil cytosolic factor 1 (NCF1) is a key regulatory component of the phagocytic NOX2 complex, which produces reactive oxygen species (ROS). Polymorphism of the Ncf1 gene is associated with increased arthritis severity. In this study, we generated targeted Ncf1 knock-in mice with inducible Ncf1 expression and determined the critical time window during which the NOX2-derived ROS protect the mice from arthritis. RESULTS: Targeted Ncf1 knock-in mice lacked NOX2-derived ROS, and in vivo allelic conversion of Ncf1 by the CreERT2 recombinase led to full protein expression and ROS production within 10 days. Mice in which Ncf1 had been activated before immunization with type II collagen (CII) developed only mild clinical symptoms of collagen-induced arthritis (CIA), whereas the ROS-deficient littermates had severe arthritis. The functional Ncf1 restricted the expansion of IL-17A-producing T cells specific for the immunodominant CII peptide. When the Ncf1 gene was activated after the priming phase, Ncf1-dependent protection from autoimmune arthritis was still observed, together with a reduced number of splenic monocytes but it was not associated with alterations in peptide-specific T cell response. The Ncf1-deficient mice expressed pronounced interferon signature, which could be normalized by conditional expression of Ncf1 and was also present in the Ncf1-mutated mouse during arthritis. Innovation and Conclusion: Ncf1 deficiency has been known to predispose to autoimmunity in both humans and rodents. Our in vivo results point to a regulatory role of NOX2-derived ROS not only during priming but also during the effector phase of CIA, most likely via different mechanisms. Antioxid. Redox Signal. 27, 1473-1490.


Asunto(s)
Artritis Experimental/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/genética , Colágeno Tipo II/efectos adversos , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Humanos , Interleucina-17/metabolismo , Ratones , Linfocitos T/inmunología
15.
Br J Pharmacol ; 147(7): 790-9, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16432499

RESUMEN

Proinflammatory cytokines and bacterial products trigger inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in inflammatory and tissue cells. In inflammation, NO acts as an important mediator having both proinflammatory and destructive effects. Protein kinase C (PKC) is a family of serine-threonine protein kinase isoenzymes involved in signal transduction pathways related to inflammatory responses. The aim of the present study was to investigate the role of classical PKC (cPKC) isoenzymes in the regulation of iNOS expression and NO production in murine J774 macrophages and the mechanisms involved. RO318220 (inhibits PKCbeta, PKCgamma and PKCvarepsilon), GO6976 (inhibits cPKC isoenzymes PKCalpha and PKCbeta) and LY333531 (inhibits PKCbeta) reduced lipopolysaccharide (LPS)-induced NO production and iNOS expression in a dose-dependent manner as did 6 h pretreatment with 1 microM phorbol 12-myristate 13-acetate (PMA) (which was shown to downregulate PKC expression). PKC inhibitors also reduced LPS-induced iNOS mRNA levels, but they did not affect the half-life of iNOS mRNA. PKC inhibitors did not alter LPS-induced activation of NF-kappaB as measured by electrophoretic mobility shift assay. All PKC inhibitors used and pretreatment with 1 microM PMA inhibited signal transducer and activator of transcription 1 (STAT1) activation as measured by the translocation of STAT1alpha from the cytosol to the nucleus by Western blot. In addition, inhibition of STAT1 activation by AG-490, an inhibitor of JAK-2, also reduced NO production. These results suggest that cPKC isoenzymes, especially PKCbeta, mediate the upregulation of iNOS expression and NO production in activated macrophages in an NF-kappaB-independent manner, possibly through the activation of transcription factor STAT1.


Asunto(s)
Lipopolisacáridos/farmacología , Macrófagos/enzimología , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Proteína Quinasa C/metabolismo , Factor de Transcripción STAT1/metabolismo , Animales , Biotransformación/efectos de los fármacos , Western Blotting , Línea Celular , Citosol/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Ensayo de Cambio de Movilidad Electroforética , Isoenzimas/metabolismo , Janus Quinasa 2 , Macrófagos/efectos de los fármacos , Ratones , FN-kappa B/metabolismo , Nitritos/metabolismo , Ésteres del Forbol/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , ARN Mensajero/análisis , ARN Mensajero/biosíntesis , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
16.
BMC Pharmacol ; 6: 5, 2006 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-16504051

RESUMEN

BACKGROUND: Nitric oxide (NO) is an inflammatory mediator, which acts as a cytotoxic agent and modulates immune responses and inflammation. p38 mitogen-activated protein kinase (MAPK) signal transduction pathway is activated by chemical and physical stress and regulates immune responses. Previous studies have shown that p38 MAPK pathway regulates NO production induced by inflammatory stimuli. The aim of the present study was to investigate the mechanisms involved in the regulation of inducible NO synthesis by p38 MAPK pathway. RESULTS: p38 MAPK inhibitors SB203580 and SB220025 stimulated lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expression and NO production in J774.2 murine macrophages. Increased iNOS mRNA expression was associated with reduced degradation of iNOS mRNA. Treatment with SB220025 increased also LPS-induced c-Jun N-terminal kinase (JNK) activity. Interestingly, JNK inhibitor SP600125 reversed the effect of SB220025 on LPS-induced iNOS mRNA expression and NO production. CONCLUSION: The results suggest that inhibition of p38 MAPK by SB220025 results in increased JNK activity, which leads to stabilisation of iNOS mRNA, to enhanced iNOS expression and to increased NO production.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/biosíntesis , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/biosíntesis , Animales , Línea Celular , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Imidazoles/farmacología , Ratones , Pirimidinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
17.
ACS Med Chem Lett ; 7(9): 826-30, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27660685

RESUMEN

Recently mannan from Saccharomyces cerevisiae has been shown to be able to induce psoriasis and psoriatic arthritis in mice, and the phenotypes resemble the corresponding human diseases. To investigate the pathological processes, we set out to label mannan with fluorine-18 ((18)F) and study the (18)F-labeled mannan in vitro and in vivo with positron emission tomography (PET). Accordingly, mannan has been transformed into (18)F-fluoromannan with (18)F-bicyclo[6.1.0]nonyne. In mouse aorta, the binding of [(18)F]fluoromannan to the atherosclerotic lesions was clearly visualized and was significantly higher compared to blocking assays (P < 0.001) or healthy mouse aorta (P < 0.001). In healthy rats the [(18)F]fluoromannan radioactivity accumulated largely in the macrophage-rich organs such as liver, spleen, and bone marrow and the excess excreted in urine. Furthermore, the corresponding (19)F-labeled mannan has been used to induce psoriasis and psoriatic arthritis in mice, which indicates that the biological function of mannan is preserved after the chemical modifications.

18.
PLoS One ; 10(11): e0141974, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26528554

RESUMEN

The genetic targeting of mouse models has given insight into complex processes. However, phenotypes of genetically targeted mice are susceptible to artifacts due to gene manipulation, which may lead to misinterpretation of the observations. To directly address these issues, we have compared the immunological phenotypes of Ncf1 knockout mice with Ncf1m1J mice possessing a naturally occurring intronic loss-of-function SNP in their Ncf1 gene. Neutrophil cytosolic factor 1 (NCF1) is the key regulatory component of the phagocytic NADPH oxidase 2 (NOX2) complex. Defects in NCF1 lead to lower production of reactive oxygen species (ROS) associated with autoimmune diseases in humans. In mice, collagen induced arthritis (CIA) and psoriatic arthritis are autoimmune disorders known to be regulated by Ncf1, and they were utilized in the present study to compare the Ncf1 knockout with Ncf1m1J mice. Targeted Ncf1 knockout mice were generated on a pure C57BL/6N genetic background, and thereafter crossed with B10.Q.Ncf1m1J mice. The targeting silenced the Ncf1 gene as intended, and both the B6N;B10.Q.Ncf1m1J mice as well as the knockout littermates had reduced ROS production compared to wild type mice. Both also exhibited enhanced STAT1 (signal transducer and activator of transcription 1) protein expression as an indicator of pronounced interferon signature reported recently for Ncf1 deficient mice. Surprisingly, female Ncf1 knockout mice were protected from CIA whereas the Ncf1m1J females developed severe disease. Ovariectomization retrieved the susceptibility of Ncf1 knockout females pointing to a sex hormone regulated protection against CIA in these mice. The data partly explains the discrepancy of the phenotypes reported earlier utilizing the Ncf1m1J mice or Ncf1 knockout mice. These observations indicate that even a targeted knockout mutation may lead to a different biological outcome in comparison to the natural loss-of-function mutation of the same gene.


Asunto(s)
Artritis Experimental/inmunología , Glicoproteínas de Membrana/inmunología , NADPH Oxidasas/inmunología , Fenotipo , Polimorfismo de Nucleótido Simple/inmunología , Especies Reactivas de Oxígeno/inmunología , Animales , Artritis Experimental/genética , Artritis Experimental/patología , Línea Celular , Femenino , Eliminación de Gen , Regulación de la Expresión Génica/inmunología , Marcación de Gen , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , NADPH Oxidasa 2 , NADPH Oxidasas/genética , Factor de Transcripción STAT1/inmunología
19.
Inflamm Bowel Dis ; 20(8): 1435-47, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24983980

RESUMEN

BACKGROUND: Traditional techniques analyzing mouse colitis are invasive, laborious, or indirect. Development of in vivo imaging techniques for specific colitis processes would be useful for monitoring disease progression and/or treatment effectiveness. The aim was to evaluate the applicability of the chemiluminescent probe L-012, which detects reactive oxygen and nitrogen species, for in vivo colitis imaging. METHODS: Two genetic colitis mouse models were used; K8 knockout (K8(-/-)) mice, which develop early colitis and the nonobese diabetic mice, which develop a transient subclinical colitis. Dextran sulphate sodium was used as a chemical colitis model. Mice were anesthetized, injected intraperitoneally with L-012, imaged, and quantified for chemiluminescent signal in the abdominal region using an IVIS camera system. RESULTS: K8(-/-) and nonobese diabetic mice showed increased L-012-mediated chemiluminescence from the abdominal region compared with control mice. L-012 signals correlated with the colitis phenotype assessed by histology and myeloperoxidase staining. Although L-012 chemiluminescence enabled detection of dextran sulphate sodium-induced colitis at an earlier time point compared with traditional methods, large mouse-to-mouse variations were noted. In situ and ex vivo L-012 imaging as well as [18F]FDG-PET imaging of K8(-/-) mice confirmed that the in vivo signals originated from the distal colon. L-012 in vivo imaging showed a wide variation in reactive oxygen and nitrogen species in young mice, irrespective of K8 genotype. In aging mice L-012 signals were consistently higher in K8(-/-) as compared to K8(+/+) mice. CONCLUSIONS: In vivo imaging using L-012 is a useful, simple, and cost-effective tool to study the level and longitudinal progression of genetic and possibly chemical murine colitis.


Asunto(s)
Colitis/metabolismo , Modelos Animales de Enfermedad , Inflamación/diagnóstico , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/patología , Sulfato de Dextran/toxicidad , Diagnóstico por Imagen , Femenino , Procesamiento de Imagen Asistido por Computador , Inflamación/metabolismo , Queratina-8/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Noqueados , Tomografía de Emisión de Positrones
20.
Antioxid Redox Signal ; 21(16): 2231-45, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24787605

RESUMEN

AIMS: Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by mutations in the phagocyte reactive oxygen species (ROS)-producing NOX2 enzyme complex and characterized by recurrent infections associated with hyperinflammatory and autoimmune manifestations. A translational, comparative analysis of CGD patients and the corresponding ROS-deficient Ncf1(m1J) mutated mouse model was performed to reveal the molecular pathways operating in NOX2 complex deficient inflammation. RESULTS: A prominent type I interferon (IFN) response signature that was accompanied by elevated autoantibody levels was identified in both mice and humans lacking functional NOX2 complex. To further underline the systemic lupus erythematosus (SLE)-related autoimmune process, we show that naïve Ncf1(m1J) mutated mice, similar to SLE patients, suffer from inflammatory kidney disease with IgG and C3 deposits in the glomeruli. Expression analysis of germ-free Ncf1(m1J) mutated mice reproduced the type I IFN signature, enabling us to conclude that the upregulated signaling pathway is of endogenous origin. INNOVATION: Our findings link the previously unexplained connection between ROS deficiency and increased susceptibility to autoimmunity by the discovery that activation of IFN signaling is a major pathway downstream of a deficient NOX2 complex in both mice and humans. CONCLUSION: We conclude that the lack of phagocyte-derived oxidative burst is associated with spontaneous autoimmunity and linked with type I IFN signature in both mice and humans.


Asunto(s)
Enfermedad Granulomatosa Crónica/genética , Inmunoglobulina G/inmunología , Interferón-alfa/genética , Interferón beta/genética , NADPH Oxidasas/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/inmunología , Adolescente , Adulto , Animales , Autoinmunidad/inmunología , Niño , Preescolar , Complemento C3/inmunología , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Enfermedad Granulomatosa Crónica/inmunología , Humanos , Interferón-alfa/inmunología , Interferón beta/inmunología , Glomérulos Renales/inmunología , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Ratones , NADPH Oxidasa 2 , NADPH Oxidasas/inmunología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA