Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(9): 4642-4652, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071231

RESUMEN

Placental trophoblast cells are potentially at risk from circulating endocrine-disrupting chemicals, such as bisphenol A (BPA). To understand how BPA and the reputedly more inert bisphenol S (BPS) affect the placenta, C57BL6J mouse dams were fed 200 µg/kg body weight BPA or BPS daily for 2 wk and then bred. They continued to receive these chemicals until embryonic day 12.5, whereupon placental samples were collected and compared with unexposed controls. BPA and BPS altered the expression of an identical set of 13 genes. Both exposures led to a decrease in the area occupied by spongiotrophoblast relative to trophoblast giant cells (GCs) within the junctional zone, markedly reduced placental serotonin (5-HT) concentrations, and lowered 5-HT GC immunoreactivity. Concentrations of dopamine and 5-hydroxyindoleacetic acid, the main metabolite of serotonin, were increased. GC dopamine immunoreactivity was increased in BPA- and BPS-exposed placentas. A strong positive correlation between 5-HT+ GCs and reductions in spongiotrophoblast to GC area suggests that this neurotransmitter is essential for maintaining cells within the junctional zone. In contrast, a negative correlation existed between dopamine+ GCs and reductions in spongiotrophoblast to GC area ratio. These outcomes lead to the following conclusions. First, BPS exposure causes almost identical placental effects as BPA. Second, a major target of BPA/BPS is either spongiotrophoblast or GCs within the junctional zone. Third, imbalances in neurotransmitter-positive GCs and an observed decrease in docosahexaenoic acid and estradiol, also occurring in response to BPA/BPS exposure, likely affect the placental-brain axis of the developing mouse fetus.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Encéfalo/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Fenoles/toxicidad , Sulfonas/toxicidad , Trofoblastos/efectos de los fármacos , Animales , Dopamina/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Serotonina/metabolismo , Trofoblastos/metabolismo
2.
Chemistry ; 22(36): 12715-23, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27416332

RESUMEN

The construction and application of a unique monodisperse closomer drug-delivery system (CDDS) integrating three different functionalities onto an icosahedral closo-dodecaborane [B12 ](2-) scaffold is described. Eleven B-OH vertices of [closo-B12 (OH)12 ](2-) were used to attach eleven copies of the anticancer drug chlorambucil and the targeting vector glucosamine through a bifurcating lysine linker. The remaining twelfth vertex was used to attach a fluorescent imaging probe. The presence of multiple glucosamine units offered a monodisperse and highly water-soluble CDDS with a high payload of therapeutic cargo. This array enhanced the penetration of the drug into cancer cells by exploiting the overexpression of GLUT-1 receptors present on cancer cells. About 15-fold enhancement in cytotoxicity was observed for CDDS-1 against Jurkat cells, compared to CDDS-2, which lacks the GLUT-1 targeting glucosamine. A cytotoxicity comparison of CDDS-1 against colorectal RKO cells and its GLUT-1 knock-out version confirmed that GLUT-1 mediates endocytosis. Using fluorescent markers both CDDS-1 and -2 were traced to the mitochondria, a novel target for alkylating agents.


Asunto(s)
Antineoplásicos/química , Sistemas de Liberación de Medicamentos/métodos , Endocitosis/fisiología , Colorantes Fluorescentes/química , Antineoplásicos/farmacología , Humanos
3.
Inorg Chem ; 52(4): 1701-9, 2013 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-23391150

RESUMEN

A vertex-differentiated icosahedral closo-B(12)(2-) core was utilized to construct a α(v)ß(3) integrin receptor-targeted (via cRGD peptide) high payload MRI contrast agent (CA-12) carrying 11 copies of Gd(3+)-DOTA chelates attached to the closo-B(12)(2-) surface via suitable linkers. The resulting polyfunctional MRI contrast agent possessed a higher relaxivity value per-Gd compared to Omniscan, a small molecular contrast agent commonly used in clinical settings. The α(v)ß(3) integrin receptor specificity of CA-12 was confirmed via in vitro cellular binding experiments and in vivo MRI of mice bearing human PC-3 prostate cancer xenografts. Integrin α(v)ß(3)-positive MDA-MB-231 cells exhibited 300% higher uptake of CA-12 than α(v)ß(3)-negative T47D cells. Serial T1-weighted MRI showed superior contrast enhancement of tumors by CA-12 compared to both a nontargeted 12-fold Gd(3+)-DOTA closomer control (CA-7) and Omniscan. Contrast enhancement by CA-12 persisted for 4 h postinjection, and subsequent enhancement of kidney tissue indicated a renal elimination route similar to Omniscan. No toxic effects of CA-12 were apparent in any mice for up to 24 h postinjection. Post-mortem ICP-OES analysis at 24 h detected no residual Gd in any of the tissue samples analyzed.


Asunto(s)
Quelantes , Medios de Contraste , Integrina alfaVbeta3/química , Imagen por Resonancia Magnética , Neoplasias Experimentales/diagnóstico , Neoplasias de la Próstata/diagnóstico , Animales , Línea Celular Tumoral , Quelantes/síntesis química , Quelantes/química , Medios de Contraste/síntesis química , Medios de Contraste/química , Gadolinio/química , Compuestos Heterocíclicos con 1 Anillo/química , Humanos , Integrina alfaVbeta3/biosíntesis , Masculino , Ratones , Ratones SCID , Estructura Molecular , Péptidos Cíclicos/química , Vitamina B 12/química
4.
Org Biomol Chem ; 11(7): 1116-26, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23296079

RESUMEN

Herein we describe the sequential synthesis of a variety of azide-alkyne click chemistry-compatible heterobifunctional oligo(ethylene glycol) (OEG) linkers for bioconjugation chemistry applications. Synthesis of these bioorthogonal linkers was accomplished through desymmetrization of OEGs by conversion of one of the hydroxyl groups to either an alkyne or azido functionality. The remaining distal hydroxyl group on the OEGs was activated by either a 4-nitrophenyl carbonate or a mesylate (-OMs) group. The -OMs functional group served as a useful precursor to form a variety of heterobifunctionalized OEG linkers containing different highly reactive end groups, e.g., iodo, -NH(2), -SH and maleimido, that were orthogonal to the alkyne or azido functional group. Also, the alkyne- and azide-terminated OEGs are useful for generating larger discrete poly(ethylene glycol) (PEG) linkers (e.g., PEG(16) and PEG(24)) by employing a Cu(I)-catalyzed 1,3-dipolar cycloaddition click reaction. The utility of these clickable heterobifunctional OEGs in bioconjugation chemistry was demonstrated by attachment of the integrin (α(v)ß(3)) receptor targeting peptide, cyclo-(Arg-Gly-Asp-D-Phe-Lys) (cRGfKD) and to the fluorescent probe sulfo-rhodamine B. The synthetic methodology presented herein is suitable for the large scale production of several novel heterobifunctionalized OEGs from readily available and inexpensive starting materials.


Asunto(s)
Alquinos/química , Azidas/química , Química Clic , Sistemas de Liberación de Medicamentos , Glicol de Etileno/síntesis química , Glicol de Etileno/química
5.
J Org Chem ; 77(24): 11333-8, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23164043

RESUMEN

We report methods for the synthesis of vertex-differentiated icosahedral closo-boranes. A single B-OH vertex of the icosahedral borane [closo-B(12)(OH)(12)](2-) was derivatized to prepare [closo-B(12)(OR)(OH)(11)](2-) using optimized alkylation conditions and purification procedures. Several representative vertex-differentiated icosahedral closo-boranes were prepared utilizing carbonate ester and azide-alkyne click chemistries on the surface of the closo-B(12)(2-) core.


Asunto(s)
Boranos/química , Boranos/síntesis química , Portadores de Fármacos/química , Portadores de Fármacos/síntesis química , Alquinos/química , Azidas/química , Técnicas de Química Sintética , Química Clic
6.
J Agric Food Chem ; 70(26): 8010-8023, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35729681

RESUMEN

Switchgrass (Panicum virgatum L.) is a bioenergy crop that grows productively on lands not suitable for food production and is an excellent target for low-pesticide input biomass production. We hypothesize that resistance to insect pests and microbial pathogens is influenced by low-molecular-weight compounds known as specialized metabolites. We employed untargeted liquid chromatography-mass spectrometry, quantitative gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance spectroscopy to identify differences in switchgrass ecotype metabolomes. This analysis revealed striking differences between upland and lowland switchgrass metabolomes as well as distinct developmental profiles. Terpenoid- and polyphenol-derived specialized metabolites were identified, including steroidal saponins, di- and sesqui-terpenoids, and flavonoids. The saponins are particularly abundant in switchgrass extracts and have diverse aglycone cores and sugar moieties. We report seven structurally distinct steroidal saponin classes with unique steroidal cores and glycosylated at one or two positions. Quantitative GC-MS revealed differences in total saponin concentrations in the leaf blade, leaf sheath, stem, rhizome, and root (2.3 ± 0.10, 0.5 ± 0.01, 2.5 ± 0.5, 3.0 ± 0.7, and 0.3 ± 0.01 µg/mg of dw, respectively). The quantitative data also demonstrated that saponin concentrations are higher in roots of lowland (ranging from 3.0 to 6.6 µg/mg of dw) than in upland (from 0.9 to 1.9 µg/mg of dw) ecotype plants, suggesting ecotypic-specific biosynthesis and/or biological functions. These results enable future testing of these specialized metabolites on biotic and abiotic stress tolerance and can provide information on the development of low-input bioenergy crops.


Asunto(s)
Panicum , Saponinas , Ecotipo , Genotipo , Metabolómica , Panicum/química , Saponinas/metabolismo
7.
J Org Chem ; 75(11): 3806-13, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20450148

RESUMEN

The photochemistry of a series of 9,10-anthraquinones with multiple benzyloxy substituents was investigated. In polar solvent, the expected Blankespoor oxidative cleavage reaction is the major reaction pathway, but in most cases, several minor products were observed. In nonpolar solvents, the abundance of these minor products increases dramatically. Four types of product were observed with the favored reaction pathway shifting with minor changes in substitution on the anthraquinone. Several types of product require cleavage of the C-O bond on the benzyloxy group and, apparently, follow a photo-Claisen-type mechanism. Others involve the expected 1,5-diradical but do not exhibit the single-electron transfer usually observed in the Blankespoor-type reaction. The results indicate the importance of considering the medium and photoredox behavior in anthraquinone photochemistry.

8.
Sci Rep ; 10(1): 10902, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616744

RESUMEN

Xenoestrogens are chemicals found in plant products, such as genistein (GEN), and in industrial chemicals, e.g., bisphenol A (BPA), present in plastics and other products that are prevalent in the environment. Early exposure to such endocrine disrupting chemicals (EDC) may affect brain development by directly disrupting neural programming and/or through the microbiome-gut-brain axis. To test this hypothesis, California mice (Peromyscus californicus) offspring were exposed through the maternal diet to GEN (250 mg/kg feed weight) or BPA (5 mg/kg feed weight, low dose- LD or 50 mg/kg, upper dose-UD), and dams were placed on these diets two weeks prior to breeding, throughout gestation, and lactation. Various behaviors, gut microbiota, and fecal metabolome were assessed at 90 days of age. The LD but not UD of BPA exposure resulted in individuals spending more time engaging in repetitive behaviors. GEN exposed individuals were more likely to exhibit such behaviors and showed socio-communicative disturbances. BPA and GEN exposed females had increased number of metabolites involved in carbohydrate metabolism and synthesis. Males exposed to BPA or GEN showed alterations in lysine degradation and phenylalanine and tyrosine metabolism. Current findings indicate cause for concern that developmental exposure to BPA or GEN might affect the microbiome-gut-brain axis.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Encéfalo/efectos de los fármacos , Disbiosis/inducido químicamente , Disruptores Endocrinos/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Genisteína/toxicidad , Peromyscus/microbiología , Fenoles/toxicidad , Efectos Tardíos de la Exposición Prenatal , Animales , Trastorno del Espectro Autista/inducido químicamente , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Dieta , Modelos Animales de Enfermedad , Heces/microbiología , Femenino , Lactancia , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/inducido químicamente , Metaboloma/efectos de los fármacos , Peromyscus/embriología , Peromyscus/crecimiento & desarrollo , Peromyscus/metabolismo , Lesiones Preconceptivas/inducido químicamente , Embarazo , Complicaciones del Embarazo/inducido químicamente , Complicaciones del Embarazo/microbiología , Conducta Social , Especificidad de la Especie , Vocalización Animal
10.
Methods Mol Biol ; 2037: 113-133, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31463842

RESUMEN

Metabolomics represents a powerful, complementary approach for studying biological system responses to various biotic and abiotic stimuli. A major challenge in metabolomics is the lack of reliable annotations for all metabolites detected in complex MS and/or NMR data. To meet this challenge, we have developed an integrated UHPLC-QTOF-MS/MS-SPE-NMR system for higher-throughput metabolite identifications, which provides advanced biological context and enhances the scientific value of metabolomics data for understanding systems biology. This integrated instrumental method is less labor-intensive and more cost-effective than conventional individual methods (LC; MS; SPE; NMR). It enables the simultaneous purification and identification of primary and secondary metabolites present in biological samples. In this chapter, we describe the configuration and use of UHPLC-MS/MS-SPE-NMR in metabolite analyses ranging from sample extraction to higher-throughput metabolite annotation. With the integrated UHPLC-QTOF-MS/MS-SPE-NMR method, we have purified and confidently identified more than 100 previously known as well as unknown triterpene and flavonoid glycosides while noting that most of the identified compounds are not commercially available.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Espectroscopía de Resonancia Magnética/métodos , Metaboloma , Metabolómica/métodos , Extracción en Fase Sólida/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Humanos
11.
Curr Protoc Plant Biol ; 4(1): e20085, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30489018

RESUMEN

Flavonoids are a class of specialized metabolites found in many different plant species. They protect against UV radiation, scavenge reactive oxygen species, are involved in plant defense responses, and are associated with plant-microorganism interactions. They have also been reported to possess health-promoting effects including anti-inflammatory, antioxidant, anticancer activity, and antihypertensive effects. Flavonoids encompass >10,000 structures where the types and amounts depend on the plant species, developmental stage, organ, and growth conditions. The diversity of flavonoid structures represents a significant challenge in the analysis of plant flavonoids. Many analytical techniques have been developed to detect and quantify flavonoids, and the most productive of these techniques use liquid chromatography (LC) coupled to mass spectrometry (MS) to analyze flavonoids due to the excellent combination of selectivity and sensitivity of MS. In addition, mass spectral libraries have been constructed to further aid flavonoid identification. Here, the use of ultra-high pressure liquid chromatography coupled to mass spectrometry (UHPLC-MS) in plant flavonoid analyses, with an emphasis on sample extraction, flavonoid separation, and MS detection, is described. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Plantas/química , Espectrometría de Masas en Tándem/métodos , Análisis de Datos , Flavonoides/química , Flavonoides/aislamiento & purificación , Espectrofotometría Ultravioleta
12.
Chem Commun (Camb) ; 55(82): 12348-12351, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31559401

RESUMEN

A multimeric MRI contrast agent based on the closo-borane motif is reported. Twelve copies of a modified AAZTA chelate with an alkyne end group are appended on an azide-functionalized closo-borane motif using Cu(i) catalyzed click chemistry. The presence of two water molecules on the Gd-bound AAZTA chelate results in high relaxivity for the closomer in vitro/in vivo.


Asunto(s)
Acetatos/química , Azepinas/química , Boranos/química , Quelantes/química , Medios de Contraste/química , Complejos de Coordinación/química , Imagen por Resonancia Magnética , Acetatos/síntesis química , Azepinas/síntesis química , Boranos/síntesis química , Quelantes/síntesis química , Medios de Contraste/síntesis química , Complejos de Coordinación/síntesis química , Estructura Molecular
13.
J Endocrinol ; 242(2): 139-157, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31189133

RESUMEN

Human offspring encounter high amounts of phytoestrogens, such as genistein (GEN), through maternal diet and soy-based formulas. Such chemicals can exert estrogenic activity and thereby disrupt neurobehavioral programming. Besides inducing direct host effects, GEN might cause gut dysbiosis and alter gut metabolites. To determine whether exposure to GEN affects these parameters, California mice (Peromyscus californicus) dams were placed 2 weeks prior to breeding and throughout gestation and lactation on a diet supplemented with GEN (250 mg/kg feed weight) or AIN93G phytoestrogen-free control diet (AIN). At weaning, offspring socio-communicative behaviors, gut microbiota and metabolite profiles were assayed. Exposure of offspring to GEN-induced sex-dependent changes in gut microbiota and metabolites. GEN exposed females were less likely to investigate a novel female mouse when tested in a three-chamber social test. When isolated, GEN males and females exhibited increased latency to elicit their first call, suggestive of reduced motivation to communicate with other individuals. Correlation analyses revealed interactions between GEN-induced microbiome, metabolome and socio-communicative behaviors. Comparison of GEN males with AIN males revealed the fraction of calls above 20 kHz was associated with daidzein, α-tocopherol, Flexispira spp. and Odoribacter spp. Results suggest early GEN exposure disrupts normal socio-communicative behaviors in California mice, which are otherwise evident in these social rodents. Such effects may be due to GEN disruptions on neural programming but might also be attributed to GEN-induced microbiota shifts and resultant changes in gut metabolites. Findings indicate cause for concern that perinatal exposure to GEN may detrimentally affect the offspring microbiome-gut-brain axis.


Asunto(s)
Encéfalo/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Genisteína/farmacología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Comunicación Animal , Animales , Encéfalo/fisiología , Femenino , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Humanos , Masculino , Peromyscus , Fitoestrógenos/farmacología , Embarazo , Conducta Social
14.
Org Biomol Chem ; 6(22): 4204-11, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18972051

RESUMEN

During the course of our study on the photochemistry of 1-alkoxy-9,10-anthraquinones, we have developed a second generation of a caged 4-hydroxy-trans-2-nonenal (4-HNE). As we optimized the anthraquinonyl chromophore to achieve water solubility, we studied the photochemistry of various substituents to understand their effect on the photochemistry. We observed a significant heavy atom effect that severely reduced the rate of oxidative cleavage of the alkoxy group. Based on the results of our substituent study, we designed a new caged 4-HNE that is soluble under physiological conditions, and that releases 4-HNE photochemically in high yield.


Asunto(s)
Aldehídos/química , Agua/química , Antraquinonas/química , Oxidación-Reducción , Fotoquímica , Solubilidad , Estereoisomerismo
15.
Sci Rep ; 8(1): 16896, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30442926

RESUMEN

Phytoestrogens are plant-derived compounds found in a variety of foods, most notably, soy. These compounds have been shown to improve immuno-metabolic health, yet mechanisms remain uncertain. We demonstrated previously that dietary phytoestrogen-rich soy (SOY) rescued metabolic dysfunction/inflammation following ovariectomy (OVX) in female rats; we also noted remarkable shifts in gut microbiota in SOY vs control diet-fed rats. Importantly, specific bacteria that significantly increased in those fed the SOY correlated positively with several favorable host metabolic parameters. One mechanism by which gut microbes might lead to such host effects is through production of bacterial metabolites. To test this possibility, we utilized non-targeted gas chromatography-mass spectrometry (GCMS) to assess the fecal metabolome in those previously studied animals. Partial least square discriminant analysis (PLSDA) revealed clear separation of fecal metabolomes based on diet and ovarian state. In particular, SOY-fed animals had greater fecal concentrations of the beneficial bacterial metabolite, S-equol, which was positively associated with several of the bacteria upregulated in the SOY group. S-equol was inversely correlated with important indicators of metabolic dysfunction and inflammation, suggesting that this metabolite might be a key mediator between SOY and gut microbiome-positive host health outcomes.


Asunto(s)
Heces , Glycine max/química , Metabolismo , Metaboloma , Miocardio/metabolismo , Ovariectomía , Animales , Ciego/microbiología , Dieta , Femenino , Microbioma Gastrointestinal , Regulación de la Expresión Génica , Redes y Vías Metabólicas , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA