Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(19): 5323-8, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27071122

RESUMEN

Anthropogenic disturbances affecting tropical forest reserves have been documented, but their ecological long-term cumulative effects are poorly understood. Habitat fragmentation and defaunation are two major anthropogenic threats to the integrity of tropical reserves. Based on a long-term (four decades) study, we document how these disturbances synergistically disrupt ecological processes and imperil biodiversity conservation and ecosystem functioning at Los Tuxtlas, the northernmost tropical rainforest reserve in the Americas. Deforestation around this reserve has reduced the reserve to a medium-sized fragment (640 ha), leading to an increased frequency of canopy-gap formation. In addition, hunting and habitat loss have caused the decline or local extinction of medium and large herbivores. Combining empirical, experimental, and modeling approaches, we support the hypothesis that such disturbances produced a demographic explosion of the long-lived (≈120 y old, maximum height of 7 m) understory palm Astrocaryum mexicanum, whose population has increased from 1,243-4,058 adult individuals per hectare in only 39 y (annual growth rate of ca 3%). Faster gap formation increased understory light availability, enhancing seed production and the growth of immature palms, whereas release from mammalian herbivory and trampling increased survival of seedlings and juveniles. In turn, the palm's demographic explosion was followed by a reduction of tree species diversity, changing forest composition, altering the relative contribution of trees to forest biomass, and disrupting litterfall dynamics. We highlight how indirect anthropogenic disturbances (e.g., palm proliferation) on otherwise protected areas threaten tropical conservation, a phenomenon that is currently eroding the planet's richest repositories of biodiversity.


Asunto(s)
Bosque Lluvioso , Clima Tropical , Animales , Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Humanos , Árboles
2.
Proc Biol Sci ; 285(1885)2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158306

RESUMEN

Maize evolution under domestication is a process that continues today. Case studies suggest that Mexican smallholder family farmers, known as campesinos, contribute importantly to this, but their significance has not been explicitly quantified and analysed as a whole. Here, we examine the evolutionary and food security implications of the scale and scope under which campesinos produce maize. We gathered official municipal-level data on maize production under rainfed conditions and identified campesino agriculture as occurring in municipalities with average yields of less than or equal to 3 t ha-1 Environmental conditions vary widely in those municipalities and are associated with a great diversity of maize races, representing 85.3% of native maize samples collected in the country. We estimate that in those municipalities, around 1.38 × 1011 genetically different individual plants are subjected to evolution under domestication each season. This implies that 5.24 × 108 mother plants contribute to the next generation with their standing genetic diversity and rare alleles. Such a large breeding population size also increases the total number of adaptive mutations that may appear and be selected for. We also estimate that campesino agriculture could potentially feed around 54.7 million people in Mexico. These analyses provide insights about the contributions of smallholder agriculture around the world.


Asunto(s)
Domesticación , Abastecimiento de Alimentos/estadística & datos numéricos , Zea mays , Agricultores , México , Fitomejoramiento , Zea mays/genética
3.
Conserv Biol ; 31(5): 1086-1097, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28233917

RESUMEN

Ecological restoration has become an important strategy to conserve biodiversity and ecosystems services. To restore 15% of degraded ecosystems as stipulated by the Convention on Biological Diversity Aichi target 15, we developed a prioritization framework to identify potential priority sites for restoration in Mexico, a megadiverse country. We used the most current biological and environmental data on Mexico to assess areas of biological importance and restoration feasibility at national scale and engaged stakeholders and experts throughout the process. We integrated 8 criteria into 2 components (i.e., biological importance and restoration feasibility) in a spatial multicriteria analysis and generated 11 scenarios to test the effect of assigning different component weights. The priority restoration sites were distributed across all terrestrial ecosystems of Mexico; 64.1% were in degraded natural vegetation and 6% were in protected areas. Our results provide a spatial guide to where restoration could enhance the persistence of species of conservation concern and vulnerable ecosystems while maximizing the likelihood of restoration success. Such spatial prioritization is a first step in informing policy makers and restoration planners where to focus local and large-scale restoration efforts, which should additionally incorporate social and monetary cost-benefit considerations.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , México , Probabilidad
4.
Bioscience ; 65(2): 164-173, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26955077

RESUMEN

Decisionmakers need updated, scientifically sound and relevant information to implement appropriate policy measures and make innovative commitments to halt biodiversity loss and improve human well-being. Here, we present a recent science-based synthesis on the biodiversity and ecosystem services of Mexico, intended to be a tool for policymakers. We describe the methodological approach used to undertake such an assessment and highlight the major findings. Organized into five volumes and originally written in Spanish (Capital Natural de México), it summarizes the available knowledge on the components, structure, and functioning of the biodiversity of Mexico; the threats and trajectories of anthropogenic impact, together with its conservation status; and the policies, institutions, and instruments available for its sustainable management. We stress the lessons learned that can be useful for similar exercises in other megadiverse developing countries and identify major gaps and strategic actions to conserve the natural capital in light of the challenges of the Anthropocene.

5.
Proc Natl Acad Sci U S A ; 106(5): 1305-12, 2009 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-19179280

RESUMEN

The Millennium Ecosystem Assessment (MA) introduced a new framework for analyzing social-ecological systems that has had wide influence in the policy and scientific communities. Studies after the MA are taking up new challenges in the basic science needed to assess, project, and manage flows of ecosystem services and effects on human well-being. Yet, our ability to draw general conclusions remains limited by focus on discipline-bound sectors of the full social-ecological system. At the same time, some polices and practices intended to improve ecosystem services and human well-being are based on untested assumptions and sparse information. The people who are affected and those who provide resources are increasingly asking for evidence that interventions improve ecosystem services and human well-being. New research is needed that considers the full ensemble of processes and feedbacks, for a range of biophysical and social systems, to better understand and manage the dynamics of the relationship between humans and the ecosystems on which they rely. Such research will expand the capacity to address fundamental questions about complex social-ecological systems while evaluating assumptions of policies and practices intended to advance human well-being through improved ecosystem services.


Asunto(s)
Ecosistema , Ambiente , Conservación de los Recursos Naturales , Humanos , Modelos Teóricos , Probabilidad , Especificidad de la Especie
6.
Nat Commun ; 13(1): 6254, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271075

RESUMEN

Crop wild relatives (CWR) intra- and interspecific diversity is essential for crop breeding and food security. However, intraspecific genetic diversity, which is central given the idiosyncratic threats to species in landscapes, is usually not considered in planning frameworks. Here, we introduce an approach to develop proxies of genetic differentiation to identify conservation areas, applying systematic conservation planning tools that produce hierarchical prioritizations of the landscape. It accounts for: (i) evolutionary processes, including historical and environmental drivers of genetic diversity, and (ii) threat processes, considering taxa-specific tolerance to human-modified habitats, and their extinction risk status. Our analyses can be used as inputs for developing national action plans for the conservation and use of CWR. Our results also inform public policy to mitigate threat processes to CWR (like crops living modified organisms or agriculture subsidies), and could advise future research (e.g. for potential germplasm collecting). Although we focus on Mesoamerican CWR within Mexico, our methodology offers opportunities to effectively guide conservation and monitoring strategies to safeguard the evolutionary resilience of any taxa, including in regions of complex evolutionary histories and mosaic landscapes.


Asunto(s)
Conservación de los Recursos Naturales , Fitomejoramiento , Humanos , Productos Agrícolas/genética , Agricultura/métodos , Evolución Biológica
7.
Front Plant Sci ; 9: 209, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29515612

RESUMEN

Domestication has been influenced by formal plant breeding since the onset of intensive agriculture and the Green Revolution. Despite providing food security for some regions, intensive agriculture has had substantial detrimental consequences for the environment and does not fulfill smallholder's needs under most developing countries conditions. Therefore, it is necessary to look for alternative plant production techniques, effective for each environmental, socio-cultural, and economic conditions. This is particularly relevant for countries that are megadiverse and major centers of plant domestication and diversification. In this white paper, a Mexico-centered initiative is proposed, with two main objectives: (1) to study, understand, conserve, and sustainably use the genetic diversity of domesticated plants and their wild relatives, as well as the ongoing evolutionary processes that generate and maintain it; and (2) to strengthen food and forestry production in a socially fair and environmentally friendly way. To fulfill these objectives, the initiative focuses on the source of variability available for domestication (genetic diversity and functional genomics), the context in which domestication acts (breeding and production) and one of its main challenges (environmental change). Research on these components can be framed to target and connect both the theoretical understanding of the evolutionary processes, the practical aspects of conservation, and food and forestry production. The target, main challenges, problems to be faced and key research questions are presented for each component, followed by a roadmap for the consolidation of this proposal as a national initiative.

9.
Evolution ; 47(1): 75-87, 1993 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28568093

RESUMEN

To estimate the relative importance of genetic drift, the effective population size ∗∗∗(Ne ) can be used. Here we present estimates of the effective population size and related measures in Astrocaryum mexicanum, a tropical palm from Los Tuxtlas rain forest, Veracruz, Mexico. Seed and pollen dispersal were measured. Seeds are primarily dispersed by gravity and secondarily dispersed by small mammals. Mean primary and secondary dispersal distances for seeds were found to be small (0.78 m and 2.35 m, respectively). A. mexicanum is beetle pollinated and pollen movements were measured by different methods: a) using fluorescent dyes, b) as the minimum distance between active female and male inflorescences, and c) using rare allozyme alleles as genetic markers. All three estimates of pollen dispersal were similar, with a mean of approximately 20 m. Using the seed and pollen dispersal data, the genetic neighborhood area (A) was estimated to be 2,551 m2 . To obtain the effective population size, three different overlapping generation methods were used to estimate an effective density with demographic data from six permanent plots. The effective density ranged from 0.040 to 0.351 individuals per m2 . The product of effective density and neighborhood area yields a direct estimate of the neighborhood effective population size (Nb ). Nb ranged from 102 to 895 individuals. Indirect estimates of population size and migration rate (Nm) were obtained using Fst for five different allozymic loci for both adults and seeds. We obtained a range of Nm from 1.2 to 19.7 in adults and a range of Nm from 4.0 to 82.6 for seeds. We discuss possible causes of the smaller indirect estimates of Nm relative to the direct and compare our estimates with values from other plant populations. Gene dispersal distances, neighborhood size, and effective population size in A. mexicanum are relatively high, suggesting that natural selection, rather than genetic drift, may play a dominant role in patterning the genetic variation in this tropical palm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA