RESUMEN
Glioblastoma is a malignant brain tumor of glial origin. These tumors are thought to be derived from astrocytic cells that undergo malignant transformation. A growing body of evidence suggests that upregulation of MMP expression plays a significant role in promoting glioma pathogenesis. Elevated expression of MMP14 not only promotes glioma invasion and tumor cell proliferation but also plays a role in angiogenesis. Despite the fact that levels of MMP14 correlate with breast cancer progression, the controversial role of MMP14 in gliomagenesis needs to be elucidated. In the present review, we discuss the role of MMP14 in glioma progression as well as the mechanisms of MMP14 regulation in the context of future therapeutic manipulations.
Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Carcinogénesis/genética , Glioblastoma/patología , Glioblastoma/terapia , Metaloproteinasa 14 de la Matriz/fisiología , Animales , Encéfalo/patología , Neoplasias Encefálicas/genética , Carcinogénesis/metabolismo , Glioblastoma/genética , Humanos , Metaloproteinasa 14 de la Matriz/genética , Terapia Molecular Dirigida , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. The current treatment protocol for ALL involves an intense chemotherapy regimen yielding cure rates of nearly 80%. However, new therapies need to be designed not only to increase the survival rate but also to combat the risk of severe therapy associated toxicities including secondary malignancies, growth problems, organ damage, and infertility. The c-Myb proto-oncogene is highly expressed in immature hematopoietic cells. In this study, we demonstrate that loss of c-Myb itself decreased the viability of these leukemic cells. Additionally, the inhibition of c-Myb caused a decrease in cell proliferation, significantly increased the number of cells in G(0) /G(1) phase of the cell cycle, increased the sensitivity of pre-B-ALL cells to cytotoxic agents in vitro, and significantly delayed disease onset in a mouse model of leukemia. Furthermore, we demonstrate that Bcl-2 is a target of c-Myb in pre-B-ALL cells. Our results identify c-Myb as a potential therapeutic target in pre-B-ALL and suggest that suppression of c-Myb levels or activity, in combination with currently used therapies and/or dose reduction, may lead to a decrease in toxicity and an increase in patient survival rates. Because c-Myb is aberrantly expressed in several other malignancies, targeting c-Myb will have broad clinical applications.
Asunto(s)
Proteínas de Neoplasias/fisiología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Proteínas Proto-Oncogénicas c-myb/fisiología , Animales , Apoptosis , Línea Celular Tumoral/efectos de los fármacos , Transformación Celular Neoplásica , Replicación del ADN/efectos de los fármacos , Doxiciclina/uso terapéutico , Femenino , Técnicas de Silenciamiento del Gen , Genes myb/efectos de los fármacos , Terapia Genética , Vectores Genéticos/uso terapéutico , Humanos , Lentivirus/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Células Precursoras de Linfocitos B/citología , Células Precursoras de Linfocitos B/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/uso terapéutico , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Glucocorticoid (GC) steroid hormones are used to treat acute lymphoblastic leukemia (ALL) because of their pro-apoptotic effects in hematopoietic cells. However, not all leukemia cells are sensitive to GC, and no assay to stratify patients is available. In the GC-sensitive T-cell ALL cell line CEM-C7, auto-up-regulation of RNA transcripts for the glucocorticoid receptor (GR) correlates with increased apoptotic response. This study aimed to determine if a facile assay of GR transcript levels might be promising for stratifying ALL patients into hormone-sensitive and hormone-resistant populations. The GR transcript profiles of various lymphoid cell lines and 4 bone marrow samples from patients with T-cell ALL were analyzed using both an optimized branched DNA (bDNA) assay and a real-time quantitative reverse transcription-polymerase chain reaction assay. There were significant correlations between both assay platforms when measuring total GR (exon 5/6) transcripts in various cell lines and patient samples, but not for a probe set that detects a specific, low abundance GR transcript (exon 1A3). Our results suggest that the bDNA platform is reproducible and precise when measuring total GR transcripts and, with further development, may ultimately offer a simple clinical assay to aid in the prediction of GC-sensitivity in ALL patients.
Asunto(s)
Apoptosis/efectos de los fármacos , Ensayo de Amplificación de Señal de ADN Ramificado/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Glucocorticoides/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Adolescente , Antineoplásicos Hormonales/farmacología , Línea Celular Tumoral , Niño , Dexametasona/farmacología , Resistencia a Antineoplásicos , Exones , Glucocorticoides/farmacología , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Receptores de Glucocorticoides/genética , Transcripción Genética/efectos de los fármacos , Regulación hacia ArribaRESUMEN
Chemokines play a vital role in tumor progression and metastasis. Chemokines are involved in the growth of many cancers including breast cancer, ovarian cancer, pancreatic cancer, melanoma, lung cancer, gastric cancer, acute lymphoblastic leukemia, colon cancer, non-small lung cancer, non-hodgkin's lymphoma, etc. The expression of chemokines and their receptors is altered in many malignancies and leads to aberrant chemokine receptor signaling. This review focuses on the role of chemokines in key processes that facilitate tumor progression including proliferation, senescence, angiogenesis, epithelial mesenchymal transition, immune evasion and metastasis.
Asunto(s)
Quimiocinas/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Animales , Progresión de la Enfermedad , Humanos , Metástasis de la Neoplasia , Transducción de SeñalRESUMEN
Metastatic brain tumors provide a formidable obstacle in the survival of affected cancer patients, an obstacle that current treatment is essentially ineffective against. Our understanding of the metastatic cascade has demonstrated the role of incorrectly regulated protein expression and proved it to be a crucial component of this process. Recently, molecular studies have emphasized the role of microRNAs, small non-coding RNAs that alter protein expression, in the regulation of both normal and abnormal biological processes, including cancer and its metastasis to the brain. Furthermore, studies have demonstrated the ability to distinguish normal from cancerous cells, primary from secondary brain tumors, and correctly categorize metastatic brain tumor tissue of origin based solely on microRNA profiles. Interestingly, manipulation of microRNAs has proven effective in cancer treatment. With the promise of reduced toxicity, increased efficacy, and individually directed therapy, using microRNA in the treatment of metastatic brain tumors may prove very useful. In this review, we focus on the multiple potential microRNA targets for the treatment of metastatic brain lesions as well as current and future directions for its use in gene therapy.
Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/uso terapéutico , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/terapia , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Perfilación de la Expresión Génica , Terapia Genética/métodos , Vectores Genéticos , Humanos , Metástasis de la Neoplasia/patología , Viroterapia Oncolítica , Medicina de Precisión , Estabilidad del ARN , ARN Mensajero/genética , Microambiente TumoralRESUMEN
Metalloproteinases are membrane-bound proteins that play a role in the cellular responses to antiglioma therapy. Previously, it has been shown that treatment of glioma cells with temozolomide (TMZ) and radiation (XRT) induces the expression of metalloproteinase 14 (MMP14). To investigate the role of MMP14 in gliomagenesis, we used several chemical inhibitors which affect MMP14 expression. Of all the inhibitors tested, we found that Marimastat not only inhibits the expression of MMP14 in U87 and U251 glioma cells, but also induces cell cycle arrest. To determine the relationship between MMP14 inhibition and alteration of the cell cycle, we used an RNAi technique. Genetic knockdown of MMP14 in U87 and U251 glioma cells induced G2/M arrest and decreased proliferation. Mechanistically, we show that TMZ and XRT regulated expression of MMP14 in clinical samples and in vitro models through downregulation of microRNA374. In vivo genetic knockdown of MMP14 significantly decreased tumor growth of glioma xenografts and improved survival of glioma-bearing mice. Moreover, the combination of MMP14 silencing with TMZ and XRT significantly improved the survival of glioma-bearing mice compared to a single modality treatment group. Therefore, we show that the inhibition of MMP14 sensitizes tumor cells to TMZ and XRT and could be used as a future strategy for antiglioma therapy.
Asunto(s)
Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/genética , Dacarbazina/análogos & derivados , Glioma/genética , Metaloproteinasa 14 de la Matriz/genética , Radiación , Animales , Antineoplásicos Alquilantes/administración & dosificación , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , División Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , Dacarbazina/administración & dosificación , Dacarbazina/farmacología , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Glioma/metabolismo , Glioma/mortalidad , Glioma/patología , Humanos , Metaloproteinasa 14 de la Matriz/metabolismo , Ratones , MicroARNs/genética , Interferencia de ARN , Temozolomida , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Glucocorticoid (GC) hormones are used in the treatment of hematopoietic malignancies. When the GC binds to the glucocorticoid receptor (GR) protein, c-Myb and GR are recruited at the Glucocorticoid Response Unit in the DNA. Here we demonstrate that c-Myb interacts with the GR and that decreasing c-Myb amounts reduces the levels of GR transcripts and protein in 697 pre-B-acute lymphoblastic leukemia (ALL) cells. Furthermore, the auto-upregulation of GR promoter 1C and promoter 1D is blunted at reduced c-Myb levels. Taken together, these data show that c-Myb is a direct, key regulator of the GR. Unexpectedly, the reduction in c-Myb levels increased the sensitivity of the cells to steroid-mediated apoptosis. This was because the reduction in c-Myb itself decreases cell viability, and the residual GR remained above the threshold needed to trigger apoptosis. These studies show the mutual importance of c-Myb and the GR in controlling survival of pre-B ALL cells.
Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Dexametasona/farmacología , Doxiciclina/farmacología , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Glucocorticoides/genética , Esteroides/farmacología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genéticaRESUMEN
Glucocorticoids (GCs) are used in combination therapy for treating acute lymphoblastic leukemia (ALL). In T-cell (CEM-C7) and pre-B-cell (697) ALL cell lines, dexamethasone (Dex) treatment causes an auto-upregulation of glucocorticoid receptor (GR) mRNA transcripts and protein. We hypothesized that there is a threshold level of GR transcripts/protein needed for cells to respond to the apoptosis-inducing effects of hormone. GR knock down using a doxycycline-controllable shRNAmir indicated that the apoptotic response changes from sensitive to resistant with changing GR levels. Titration of the 697 cell GR to equal that of the CEM-C7 T-cell ALL line caused a shift in sensitivity to that seen in CEM-C7 cells. While the same level of GR is required to trigger apoptosis in both T-cell and pre-B-cell ALL lineages, similarities and differences were observed for the regulation of target genes in these lineages. These preliminary gene regulation patterns may lead to the development of a molecular signature for GC-sensitive and GC-resistant leukemia cells.