Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Bioinformatics ; 25(1): 143, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566033

RESUMEN

BACKGROUND: Liquid-liquid phase separation (LLPS) by biomolecules plays a central role in various biological phenomena and has garnered significant attention. The behavior of LLPS is strongly influenced by the characteristics of RNAs and environmental factors such as pH and temperature, as well as the properties of proteins. Recently, several databases recording LLPS-related biomolecules have been established, and prediction models of LLPS-related phenomena have been explored using these databases. However, a prediction model that concurrently considers proteins, RNAs, and experimental conditions has not been developed due to the limited information available from individual experiments in public databases. RESULTS: To address this challenge, we have constructed a new dataset, RNAPSEC, which serves each experiment as a data point. This dataset was accomplished by manually collecting data from public literature. Utilizing RNAPSEC, we developed two prediction models that consider a protein, RNA, and experimental conditions. The first model can predict the LLPS behavior of a protein and RNA under given experimental conditions. The second model can predict the required conditions for a given protein and RNA to undergo LLPS. CONCLUSIONS: RNAPSEC and these prediction models are expected to accelerate our understanding of the roles of proteins, RNAs, and environmental factors in LLPS.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , ARN , ARN/genética , Proteínas Intrínsecamente Desordenadas/química
2.
J Neurosci ; 32(35): 11905-18, 2012 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-22933777

RESUMEN

Semaphorin3A (Sema3A) exerts a wide variety of biological functions by regulating reorganization of actin and tubulin cytoskeletal proteins through signaling pathways including sequential phosphorylation of collapsin response mediator protein 1 (CRMP1) and CRMP2 by cyclin-dependent kinase-5 and glycogen synthase kinase-3ß (GSK3ß). To delineate how GSK3ß mediates Sema3A signaling, we here determined the substrates of GSK3ß involved. Introduction of either GSK3ß mutants, GSK3ß-R96A, L128A, or K85M into chick dorsal root ganglion (DRG) neurons suppressed Sema3A-induced growth cone collapse, thereby suggesting that unprimed as well as primed substrates are involved in Sema3A signaling. Axin-1, a key player in Wnt signaling, is an unprimed substrate of GSK3ß. The phosphorylation of Axin-1 by GSK3ß accelerates the association of Axin-1 with ß-catenin. Immunocytochemical studies revealed that Sema3A induced an increase in the intensity levels of ß-catenin in the DRG growth cones. Axin-1 siRNA knockdown suppressed Sema3A-induced growth cone collapse. The reintroduction of RNAi-resistant Axin-1 (rAxin-1)-wt rescued the responsiveness to Sema3A, while that of nonphosphorylated mutants, rAxin S322A/S326A/S330A and T485A/S490A/S497A, did not. Sema3A also enhanced the colocalization of GSK3ß, Axin-1, and ß-catenin in the growth cones. The increase of ß-catenin in the growth cones was suppressed by the siRNA knockdown of Axin-1. Furthermore, either Axin-1 or ß-catenin RNAi knockdown suppressed the internalization of Sema3A. These results suggest that Sema3A induces the formation of GSK3ß/Axin-1/ß-catenin complex, which regulates signaling cascade of Sema3A via an endocytotic mechanism. This finding should provide clue for understanding of mechanisms of a wide variety of biological functions of Sema3A.


Asunto(s)
Proteína Axina/fisiología , Glucógeno Sintasa Quinasa 3/fisiología , Semaforina-3A/fisiología , Transducción de Señal/fisiología , beta Catenina/fisiología , Animales , Proteína Axina/genética , Células Cultivadas , Embrión de Pollo , Endocitosis/genética , Femenino , Ganglios Espinales/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Humanos , Masculino , Ratones , Mutagénesis Sitio-Dirigida , Técnicas de Cultivo de Órganos , Fosforilación/genética , Ratas , Semaforina-3A/genética , Transducción de Señal/genética , Especificidad por Sustrato/genética , beta Catenina/genética
3.
Neurosci Lett ; 810: 137317, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37286070

RESUMEN

Fragile X syndrome (FXS) is a developmental disorder characterized by intellectual disability and autistic-like behaviors. These symptoms are supposed to result from dysregulated translation in pre- and postsynapses, resulting in aberrant synaptic plasticity. Although most drug development research on FXS has focused on aberrant postsynaptic functions by excess translation in postsynapses, the effect of drug candidates on FXS in presynaptic release is largely unclear. In this report, we developed a novel assay system using neuron ball culture with beads to induce presynapse formation, allowing for the analysis of presynaptic phenotypes, including presynaptic release. Metformin, which is shown to rescue core phenotypes in FXS mouse model by normalizing dysregulated translation, ameliorated the exaggerated presynaptic release of neurons of FXS model mouse using this assay system. Furthermore, metformin suppressed the excess accumulation of the active zone protein Munc18-1, which is supposed to be locally translated in presynapses. These results suggest that metformin rescues both postsynaptic and presynaptic phenotypes by inhibiting excess translation in FXS neurons.


Asunto(s)
Síndrome del Cromosoma X Frágil , Animales , Ratones , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Ratones Noqueados , Neuronas/metabolismo , Sinapsis/fisiología
4.
J Neurosci ; 31(5): 1773-9, 2011 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-21289187

RESUMEN

Collapsin response mediator protein 5 (CRMP5) is one of the CRMP members that expresses abundantly in the developing brain. To examine the in vivo function of CRMP5, we generated crmp5-deficient (crmp5(-/-)) mice. Anti-calbindin immunofluorescence studies of crmp5(-/-) mice revealed aberrant dendrite morphology; specifically, a decrease in the size of soma and diameter of primary dendrite of the cerebellar Purkinje cells at postnatal day 21 (P21) and P28, but not at P14. Coincidentally, CRMP5 is detected in Purkinje cells at P21 and P28 from crmp5(+/-) mice. In cerebellar slices of crmp5(-/-) mice, the induction of long-term depression of excitatory synaptic transmission between parallel fibers and Purkinje cells was deficient. Given that brain-derived neurotrophic factor (BDNF) plays major roles in dendritic development, we tried to elucidate the possible roles of CRMP5 in BDNF signaling. The effect of BDNF to induce dendritic branching was markedly attenuated in cultured crmp5(-/-) neurons. Furthermore, CRMP5 was tyrosine phosphorylated when coexpressed with neurotrophic tyrosine kinase receptor type 2 (TrkB), a receptor for BDNF, in HEK293T cells. These findings suggest that CRMP5 is involved in the development, maintenance and synaptic plasticity of Purkinje cells.


Asunto(s)
Amidohidrolasas/metabolismo , Dendritas/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Células de Purkinje/metabolismo , Receptor trkB/metabolismo , Transmisión Sináptica/fisiología , Amidohidrolasas/deficiencia , Amidohidrolasas/genética , Animales , Animales Recién Nacidos , Factor Neurotrófico Derivado del Encéfalo/farmacología , Células Cultivadas , Cerebelo/metabolismo , Dendritas/efectos de los fármacos , Células HEK293 , Humanos , Hidrolasas , Inmunohistoquímica , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos , Plasticidad Neuronal/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Células de Purkinje/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
5.
Nat Methods ; 6(5): 347-9, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19349979
6.
J Cell Biol ; 178(6): 965-80, 2007 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-17785519

RESUMEN

Subcellular regulation of protein synthesis requires the correct localization of messenger RNAs (mRNAs) within the cell. In this study, we investigate whether the axonal localization of neuronal mRNAs is regulated by extracellular stimuli. By profiling axonal levels of 50 mRNAs detected in regenerating adult sensory axons, we show that neurotrophins can increase and decrease levels of axonal mRNAs. Neurotrophins (nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3) regulate axonal mRNA levels and use distinct downstream signals to localize individual mRNAs. However, myelin-associated glycoprotein and semaphorin 3A regulate axonal levels of different mRNAs and elicit the opposite effect on axonal mRNA levels from those observed with neurotrophins. The axonal mRNAs accumulate at or are depleted from points of ligand stimulation along the axons. The translation product of a chimeric green fluorescent protein-beta-actin mRNA showed similar accumulation or depletion adjacent to stimuli that increase or decrease axonal levels of endogenous beta-actin mRNA. Thus, extracellular ligands can regulate protein generation within subcellular regions by specifically altering the localized levels of particular mRNAs.


Asunto(s)
Neuronas/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal , Actinas/genética , Actinas/metabolismo , Animales , Axones/metabolismo , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Hibridación in Situ , Glicoproteína Asociada a Mielina/metabolismo , Factores de Crecimiento Nervioso/fisiología , Regeneración Nerviosa , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Semaforina-3A/metabolismo
7.
J Neurosci ; 30(28): 9349-58, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20631164

RESUMEN

The localization of specific mRNAs and their local translation in growth cones of developing axons has been shown to play an important mechanism to regulate growth cone turning responses to attractive or repulsive cues. However, the mechanism whereby local translation and growth cone turning may be controlled by specific mRNA-binding proteins is unknown. Here we demonstrate that brain-derived neurotrophic factor (BDNF) signals the Src-dependent phosphorylation of the beta-actin mRNA zipcode binding protein 1 (ZBP1), which is necessary for beta-actin synthesis and growth cone turning. We raised a phospho-specific ZBP1 antibody to Tyr396, which is a Src phosphorylation site, and immunofluorescence revealed BDNF-induced phosphorylation of ZBP1 within growth cones. The BDNF-induced increase in fluorescent signal of a green fluorescent protein translation reporter with the 3' untranslated region of beta-actin was attenuated with the Src family kinase-specific inhibitor PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine]. Furthermore, a nonphosphorylatable mutant, ZBP1 Y396F, suppressed the BDNF-induced and protein synthesis-dependent increase in beta-actin localization in growth cones. Last, the ZBP1 Y396F mutant blocked BDNF-induced attractive growth cone turning. These results indicate that phosphorylation of ZBP1 at Tyr396 within growth cones has a critical role to regulate local protein synthesis and growth cone turning. Our findings provide new insight into how the regulated phosphorylation of mRNA-binding proteins influences local translation underlying growth cone motility and axon guidance.


Asunto(s)
Actinas/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Conos de Crecimiento/metabolismo , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Actinas/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/farmacología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Técnica del Anticuerpo Fluorescente , Conos de Crecimiento/efectos de los fármacos , Procesamiento de Imagen Asistido por Computador , Hibridación Fluorescente in Situ , Neuronas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Xenopus
8.
J Biol Chem ; 284(40): 27393-401, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19652227

RESUMEN

Collapsin response mediator protein 2 (CRMP2) is an intracellular protein that mediates signaling of Semaphorin3A (Sema3A), a repulsive axon guidance molecule. Fyn, a Src-type tyrosine kinase, is involved in the Sema3A signaling. However, the relationship between CRMP2 and Fyn in this signaling pathway is still unknown. In our research, we demonstrated that Fyn phosphorylated CRMP2 at Tyr(32) residues in HEK293T cells. Immunohistochemical analysis using a phospho-specific antibody at Tyr(32) of CRMP showed that Tyr(32)-phosphorylated CRMP was abundant in the nervous system, including dorsal root ganglion neurons, the molecular and Purkinje cell layer of adult cerebellum, and hippocampal fimbria. Overexpression of a nonphosphorylated mutant (Tyr(32) to Phe(32)) of CRMP2 in dorsal root ganglion neurons interfered with Sema3A-induced growth cone collapse response. These results suggest that Fyn-dependent phosphorylation of CRMP2 at Tyr(32) is involved in Sema3A signaling.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Fosfotirosina/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Semaforina-3A/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Anticuerpos/inmunología , Especificidad de Anticuerpos , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intercelular , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/inmunología , Fosforilación , Ratas
9.
Nat Neurosci ; 9(10): 1265-73, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16980965

RESUMEN

Axon pathfinding requires directional responses of growth cones to extracellular cues, which have been shown to involve local synthesis of protein. The identity and functions of the locally produced proteins remain, however, unclear. Here we report that Ca(2+)-dependent bidirectional turning of Xenopus laevis growth cones requires localized distribution and translation of beta-actin messenger RNA. Both beta-actin mRNA and its zipcode-binding protein, ZBP1, are localized at the growth cone and become asymmetrically distributed upon local exposure to brain-derived neurotrophic factor (BDNF). Inhibition of protein synthesis or antisense interference with beta-actin mRNA-ZBP1 binding abolishes both Ca(2+)-mediated attraction and repulsion. In addition, attraction involves a local increase in beta-actin, whereas repulsion is accompanied by a local decrease in beta-actin; thus, both produce a synthesis- and ZBP1 binding-dependent beta-actin asymmetry but with opposite polarities. Together with a similar asymmetry in Src activity during bidirectional responses, our findings indicate that Ca(2+)-dependent spatial regulation of beta-actin synthesis through Src contributes to the directional motility of growth cones during guidance.


Asunto(s)
Actinas/genética , Calcio/metabolismo , Conos de Crecimiento/fisiología , Neuronas/citología , Biosíntesis de Proteínas/fisiología , ARN Mensajero/fisiología , Animales , Western Blotting/métodos , Factor Neurotrófico Derivado del Encéfalo/farmacología , Células Cultivadas , Interacciones Farmacológicas , Embrión no Mamífero , Inhibidores Enzimáticos/farmacología , Técnica del Anticuerpo Fluorescente/métodos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Conos de Crecimiento/efectos de los fármacos , Hibridación in Situ/métodos , Neuronas/fisiología , Biosíntesis de Proteínas/efectos de los fármacos , Factores de Tiempo , Xenopus laevis
10.
Biomolecules ; 10(5)2020 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-32344905

RESUMEN

During neural development, growth cones, very motile compartments of tips of axons, lead axonal extension to the correct targets. Subsequently, presynapses, another axonal compartment with vigorous trafficking of synaptic vesicles, emerge to form functional synapses with postsynapses. In response to extracellular stimuli, the immediate supply of proteins by local translation within these two axonal compartments far from cell bodies confers high motility of growth cones and active vesicle trafficking in presynapses. Although local translation in growth cones and presynapses occurs at a very low level compared with cell bodies and even dendrites, recent progress in omics and visualization techniques with subcellular fractionation of these compartments has revealed the actual situation of local translation within these two axonal compartments. Here, the increasing evidence for local protein synthesis in growth cones and presynapses for axonal and synaptic functions has been reviewed. Furthermore, the mechanisms regulating local translation in these two compartments and pathophysiological conditions caused by dysregulated local translation are highlighted.


Asunto(s)
Conos de Crecimiento/metabolismo , Terminales Presinápticos/metabolismo , Biosíntesis de Proteínas , Animales , Conos de Crecimiento/fisiología , Humanos , Terminales Presinápticos/fisiología , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-32184710

RESUMEN

Fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates local translation in dendrites and spines for synaptic plasticity. In axons, FMRP is implicated in axonal extension and axon guidance. We previously demonstrated the involvement of FMRP in growth cone collapse via a translation-dependent response to Semaphorin-3A (Sema3A), a repulsive axon guidance factor. In the case of attractive axon guidance factors, RNA-binding proteins such as zipcode binding protein 1 (ZBP1) accumulate towards the stimulated side of growth cones for local translation. However, it remains unclear how Sema3A effects FMRP localization in growth cones. Here, we show that levels of FMRP in growth cones of hippocampal neurons decreased after Sema3A stimulation. This decrease in FMRP was suppressed by the ubiquitin-activating enzyme E1 enzyme inhibitor PYR-41 and proteasome inhibitor MG132, suggesting that the ubiquitin-proteasome pathway is involved in Sema3A-induced FMRP degradation in growth cones. Moreover, the E1 enzyme or proteasome inhibitor suppressed Sema3A-induced increases in microtubule-associated protein 1B (MAP1B) in growth cones, suggesting that the ubiquitin-proteasome pathway promotes local translation of MAP1B, whose translation is mediated by FMRP. These inhibitors also blocked the Sema3A-induced growth cone collapse. Collectively, our results suggest that Sema3A promotes degradation of FMRP in growth cones through the ubiquitin-proteasome pathway, leading to growth cone collapse via local translation of MAP1B. These findings reveal a new mechanism of axon guidance regulation: degradation of the translational suppressor FMRP via the ubiquitin-proteasome pathway.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Conos de Crecimiento/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Semaforina-3A/metabolismo , Transducción de Señal/fisiología , Ubiquitina/metabolismo , Animales , Células Cultivadas , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/análisis , Conos de Crecimiento/química , Hipocampo/química , Hipocampo/metabolismo , Ratones , Complejo de la Endopetidasa Proteasomal/análisis , Semaforina-3A/análisis , Ubiquitina/análisis
12.
Mol Brain ; 13(1): 167, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33323119

RESUMEN

Corticogenesis is one of the most critical and complicated processes during embryonic brain development. Any slight impairment in corticogenesis could cause neurodevelopmental disorders such as Fragile X syndrome (FXS), of which symptoms contain intellectual disability (ID) and autism spectrum disorder (ASD). Fragile X mental retardation protein (FMRP), an RNA-binding protein responsible for FXS, shows strong expression in neural stem/precursor cells (NPCs) during corticogenesis, although its function during brain development remains largely unknown. In this study, we attempted to identify the FMRP target mRNAs in the cortical primordium using RNA immunoprecipitation sequencing analysis in the mouse embryonic brain. We identified 865 candidate genes as targets of FMRP involving 126 and 118 genes overlapped with ID and ASD-associated genes, respectively. These overlapped genes were enriched with those related to chromatin/chromosome organization and histone modifications, suggesting the involvement of FMRP in epigenetic regulation. We further identified a common set of 17 FMRP "core" target genes involved in neurogenesis/FXS/ID/ASD, containing factors associated with Ras/mitogen-activated protein kinase, Wnt/ß-catenin, and mammalian target of rapamycin (mTOR) pathways. We indeed showed overactivation of mTOR signaling via an increase in mTOR phosphorylation in the Fmr1 knockout (Fmr1 KO) neocortex. Our results provide further insight into the critical roles of FMRP in the developing brain, where dysfunction of FMRP may influence the regulation of its mRNA targets affecting signaling pathways and epigenetic modifications.


Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Organogénesis , Serina-Treonina Quinasas TOR/metabolismo , Vía de Señalización Wnt , Proteínas ras/metabolismo , Animales , Trastorno del Espectro Autista/genética , Embrión de Mamíferos/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Regulación del Desarrollo de la Expresión Génica , Discapacidad Intelectual/genética , Masculino , Ratones Endogámicos C57BL , Neurogénesis/genética , Organogénesis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
BMJ Case Rep ; 12(8)2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31451453

RESUMEN

This report discusses a case of superior mesenteric artery (SMA) syndrome in a previously healthy 15-year-old boy with no weight loss or other common risk factors. The patient presented to the emergency department with acute bilious vomiting and epigastric pain after acute consumption of a meal and excessive quantities of water. The patient was diagnosed with SMA syndrome based on the findings of contrasted CT of the abdomen. In early puberty, boys have a significant increase in lean body mass and a concomitant loss of adipose tissues. These pubertal changes lead to a narrowing of the aortomesenteric space. The acute consumption of food and water caused a transient obstruction at the already-narrowed space, which resulted in the manifestation of SMA syndrome. This case demonstrates that pubertal growth spurt is a risk factor for SMA syndrome, and acute excessive ingestion can trigger SMA syndrome among those in puberty.


Asunto(s)
Bulimia/complicaciones , Pubertad/fisiología , Síndrome de la Arteria Mesentérica Superior , Tomografía Computarizada por Rayos X/métodos , Dolor Abdominal/diagnóstico , Dolor Abdominal/etiología , Adolescente , Bulimia/fisiopatología , Diagnóstico Diferencial , Humanos , Masculino , Intensificación de Imagen Radiográfica/métodos , Radiografía Abdominal/métodos , Síndrome de la Arteria Mesentérica Superior/diagnóstico , Síndrome de la Arteria Mesentérica Superior/etiología , Síndrome de la Arteria Mesentérica Superior/fisiopatología , Síndrome de la Arteria Mesentérica Superior/prevención & control , Vómitos/diagnóstico , Vómitos/etiología
14.
J Vis Exp ; (150)2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31424445

RESUMEN

During neuronal development, synapse formation is an important step to establish neural circuits. To form synapses, synaptic proteins must be supplied in appropriate order by transport from cell bodies and/or local translation in immature synapses. However, it is not fully understood how synaptic proteins accumulate in synapses in proper order. Here, we present a novel method to analyze presynaptic formation by using the combination of neuron ball culture with beads to induce presynapse formation. Neuron balls that is neuronal cell aggregates provide axonal sheets far from cell bodies and dendrites, so that weak fluorescent signals of presynapses can be detected by avoiding overwhelming signals of cell bodies. As beads to trigger presynapse formation, we use beads conjugated with leucine-rich repeat transmembrane neuronal 2 (LRRTM2), an excitatory presynaptic organizer. Using this method, we demonstrated that vesicular glutamate transporter 1 (vGlut1), a synaptic vesicle protein, accumulated in presynapses faster than Munc18-1, an active zone protein. Munc18-1 accumulated translation-dependently in presynapse even after removing cell bodies. This finding indicates the Munc18-1 accumulation by local translation in axons, not transport from cell bodies. In conclusion, this method is suitable to analyze accumulation of synaptic proteins in presynapses and source of synaptic proteins. As neuron ball culture is simple and it is not necessary to use special apparatus, this method could be applicable to other experimental platforms.


Asunto(s)
Neuronas/fisiología , Sinapsis/fisiología , Animales , Axones/metabolismo , Células Cultivadas , Ratones , Proteínas Munc18/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
15.
Neurosci Res ; 146: 36-47, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30240639

RESUMEN

Fragile X mental retardation protein (FMRP), a causative gene (FMR1) product of Fragile X syndrome (FXS), is an RNA-binding protein to regulate local protein synthesis in dendrites for postsynaptic functions. However, involvement of FMRP in local protein synthesis in axons for presynaptic functions remains unclear. Here we investigated role of FMRP in local translation of the active zone protein Munc18-1 during presynapse formation. We found that leucine-rich repeat transmembrane neuronal 2 (LRRTM2)-conjugated beads, which promotes synchronized presynapse formation, induced simultaneous accumulation of FMRP and Munc18-1 in presynapses of axons of mouse cortical neurons in neuronal cell aggregate culture. The LRRTM2-induced accumulation of Munc18-1 in presynapses was observed in axons protein-synthesis-dependently, even physically separated from cell bodies. The accumulation of Munc18-1 was enhanced in Fmr1-knockout (KO) axons as compared to wild type (WT), suggesting FMRP-regulated suppression for local translation of Munc18-1 in axons during presynapse formation. Using naturally formed synapses of dissociated culture, structured illumination microscope revealed that accumulation of Munc18-1 puncta in Fmr1-KO neurons increased significantly at 19 days in vitro, as compared to WT. Our findings lead the possibility that excessive accumulation of Munc18-1 in presynapses at early stage of synaptic development in Fmr1-KO neurons may have a critical role in impaired presynaptic functions in FXS.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Sinapsis/metabolismo , Animales , Axones/metabolismo , Corteza Cerebral , Dendritas/metabolismo , Síndrome del Cromosoma X Frágil , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
16.
Neuron ; 35(5): 907-20, 2002 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-12372285

RESUMEN

Semaphorin-3A (Sema3A), a member of class 3 semaphorins, regulates axon and dendrite guidance in the nervous system. How Sema3A and its receptors plexin-As and neuropilins regulate neuronal guidance is unknown. We observed that in fyn- and cdk5-deficient mice, Sema3A-induced growth cone collapse responses were attenuated compared to their heterologous controls. Cdk5 is associated with plexin-A2 through the active state of Fyn. Sema3A promotes Cdk5 activity through phosphorylation of Tyr15, a phosphorylation site with Fyn. A Cdk5 mutant (Tyr15 to Ala) shows a dominant-negative effect on the Sema3A-induced collapse response. The sema3A gene shows strong interaction with fyn for apical dendrite guidance in the cerebral cortex. We propose a signal transduction pathway in which Fyn and Cdk5 mediate neuronal guidance regulated by Sema3A.


Asunto(s)
Corteza Cerebral/fisiología , Quinasas Ciclina-Dependientes/deficiencia , Quinasas Ciclina-Dependientes/fisiología , Dendritas/fisiología , Glicoproteínas/fisiología , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/fisiología , Transducción de Señal/fisiología , Animales , Células COS , Corteza Cerebral/efectos de los fármacos , Embrión de Pollo , Quinasa 5 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes/genética , Dendritas/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/fisiología , Humanos , Ratones , Ratones Mutantes , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-fyn , Semaforina-3A , Transducción de Señal/efectos de los fármacos
17.
J Neurosci ; 26(11): 2971-80, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16540575

RESUMEN

A member of semaphorin family, semaphorin3A (Sema3A), acts as a chemorepellent or chemoattractant on a wide variety of axons and dendrites in the development of the nervous systems. We here show that Sema3A induces clustering of both postsynaptic density-95 (PSD-95) and presynaptic synapsin I in cultured cortical neurons without changing the density of spines or filopodia. Neuropilin-1 (NRP-1), a receptor for Sema3A, is present on both axons and dendrites. When the cultured neurons are exposed to Sema3A, the cluster size of PSD-95 is markedly enhanced, and an extensive colocalization of PSD-95 and NRP-1 or actin-rich protrusion is seen. The effects of Sema3A on spine morphology are blocked by PP2, an Src type tyrosine kinase inhibitor, but not by the PP3, the inactive-related compound. In the cultured cortical neurons from fyn(-/-) mice, dendrites bear few spines, and Sema3A does not induce PSD-95 cluster formation on the dendrites. Sema3A and its receptor genes are highly expressed during the synaptogenic period of postnatal days 10 and 15. The cortical neurons in layer V, but not layer III, show a lowered density of synaptic bouton-like structure on dendrites in sema3A- and fyn-deficient mice. The neurons of the double-heterozygous mice show the lowered spine density, whereas those of single heterozygous mice show similar levels of the spine density as the wild type. These findings suggest that the Sema3A signaling pathway plays an important role in the regulation of dendritic spine maturation in the cerebral cortex neurons.


Asunto(s)
Corteza Cerebral/citología , Dendritas/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/efectos de los fármacos , Terminales Presinápticos/metabolismo , Proteínas Proto-Oncogénicas c-fyn/fisiología , Semaforina-3A/fisiología , Sinapsinas/metabolismo , Actinas/metabolismo , Animales , Células Cultivadas/efectos de los fármacos , Células Cultivadas/metabolismo , Células Cultivadas/ultraestructura , Dendritas/ultraestructura , Homólogo 4 de la Proteína Discs Large , Genotipo , Guanilato-Quinasas , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Morfogénesis/efectos de los fármacos , Neuronas/ultraestructura , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fyn/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-fyn/deficiencia , Proteínas Proto-Oncogénicas c-fyn/genética , Pirazoles/farmacología , Pirimidinas/farmacología , Semaforina-3A/biosíntesis , Semaforina-3A/deficiencia , Semaforina-3A/genética , Semaforina-3A/farmacología , Transducción de Señal/fisiología
18.
Cell Adh Migr ; 10(6): 627-640, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27392015

RESUMEN

Numerous cell adhesion molecules, extracellular matrix proteins and axon guidance molecules participate in neuronal network formation through local effects at axo-dendritic, axo-axonic or dendro-dendritic contact sites. In contrast, neurotrophins and their receptors play crucial roles in neural wiring by sending retrograde signals to remote cell bodies. Semaphorin 3A (Sema3A), a prototype of secreted type 3 semaphorins, is implicated in axon repulsion, dendritic branching and synapse formation via binding protein neuropilin-1 (NRP1) and the signal transducing protein PlexinAs (PlexAs) complex. This review focuses on Sema3A retrograde signaling that regulates dendritic localization of AMPA-type glutamate receptor GluA2 and dendritic patterning. This signaling is elicited by activation of NRP1 in growth cones and is propagated to cell bodies by dynein-dependent retrograde axonal transport of PlexAs. It also requires interaction between PlexAs and a high-affinity receptor for nerve growth factor, toropomyosin receptor kinase A. We propose a control mechanism by which retrograde Sema3A signaling regulates the glutamate receptor localization through trafficking of cis-interacting PlexAs with GluA2 along dendrites; this remote signaling may be an alternative mechanism to local adhesive contacts for neural network formation.


Asunto(s)
Dendritas/metabolismo , Espacio Intracelular/metabolismo , Semaforina-3A/metabolismo , Transducción de Señal , Animales , Axones/metabolismo , Humanos , Sinapsis/metabolismo
19.
J Neurosci ; 23(7): 2527-37, 2003 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-12684437

RESUMEN

Growth cone motility and morphology are based on actin-filament dynamics. Cofilin plays an essential role for the rapid turnover of actin filaments by severing and depolymerizing them. The activity of cofilin is repressed by phosphorylation at Ser3 by LIM kinase (LIMK, in which LIM is an acronym of the three gene products Lin-11, Isl-1, and Mec-3) and is reactivated by dephosphorylation by phosphatases, termed Slingshot (SSH). We investigated the roles of cofilin, LIMK, and SSH in the growth cone motility and morphology and neurite extension by expressing fluorescence protein-labeled cofilin, LIMK1, SSH1, or their mutants in chick dorsal root ganglion (DRG) neurons and then monitoring live images of growth cones by time-lapse video fluorescence microscopy. The expression of LIMK1 remarkably repressed growth cone motility and neurite extension, whereas the expression of SSH1 or a nonphosphorylatable S3A mutant of cofilin enhanced these events. The fan-like shape of growth cones was disorganized by the expression of any of these proteins. The repressive effects on growth cone behavior by LIMK1 expression were significantly rescued by the coexpression of S3A-cofilin or SSH1. These findings suggest that LIMK1 and SSH1 play critical roles in controlling growth cone motility and morphology and neurite extension by regulating the activity of cofilin and may be involved in signaling pathways that regulate stimulus-induced growth cone guidance. Using various mutants of cofilin, we also obtained evidence that the actin-filament-severing activity of cofilin is critical for growth cone motility and neurite extension.


Asunto(s)
Conos de Crecimiento/fisiología , Conos de Crecimiento/ultraestructura , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas Fosfatasas/fisiología , Proteínas Quinasas/fisiología , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina , Secuencia de Aminoácidos , Animales , Células COS , Células Cultivadas , Embrión de Pollo , Clonación Molecular , Ganglios Espinales/citología , Ganglios Espinales/enzimología , Conos de Crecimiento/enzimología , Células HeLa , Humanos , Quinasas Lim , Datos de Secuencia Molecular , Movimiento , Neuronas/enzimología , Fosforilación , Proteínas Quinasas/análisis , Proteínas Quinasas/genética
20.
J Neurosci ; 24(27): 6161-70, 2004 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-15240808

RESUMEN

An impressive body of evidence has been accumulated indicating that local protein synthesis is implicated in navigation of neurite extension induced by guidance cues, such as semaphorin3A (Sema3A). We found previously that a Src type tyrosine kinase Fyn and cyclin-dependent kinase 5 (Cdk5) mediate Sema3A-signaling. We also showed that Sema3A elicits axonal transport through neuropilin-1, a receptor for Sema3A, located at the growth cones. Here, we investigate the relationship between Sema3A-induced local signaling, protein synthesis, and axonal transport. Lavendustin A, a tyrosine kinase inhibitor, and olomoucine, a cyclin-dependent kinase inhibitor, suppressed Sema3A-induced facilitation of anterograde and retrograde axonal transport in dorsal root ganglion (DRG) neuron with and without the cell body. Sema3A-induced facilitation of axonal transport was attenuated in DRG neurons of fyn- (fyn-/-) and a Cdk5 activator, p35 (p35-/-)-deficient mice when compared with those of wild-type or heterozygous mice. Inhibition of protein synthesis suppressed Sema3A-induced facilitation of axonal transport in the DRG neuron with and without the cell body. Sema3A enhanced the level of immunoreactivity of phosphorylated eukaryotic translation initiation factor 4E (eIF-4E) within 5 min in growth cones in a time course similar to that of the facilitated axonal transport. This enhanced signal for phospho-eIF4E was blocked by lavendustin A or olomoucine and was not detected in the fyn-/- and p35-/- neurons. These results provide evidence for a mutual regulatory mechanism between local protein synthesis and axonal transport.


Asunto(s)
Transporte Axonal/efectos de los fármacos , Transporte Axonal/fisiología , Factor 4E Eucariótico de Iniciación/metabolismo , Semaforina-3A/fisiología , Animales , Células Cultivadas , Quinasa 5 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes , Inhibidores Enzimáticos/farmacología , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Humanos , Cinetina , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/ultraestructura , Fenoles/farmacología , Fosforilación , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-fyn , Purinas/farmacología , Semaforina-3A/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA