RESUMEN
The ability to control the charge and spin states of nitrogen-vacancy (NV) centers near the diamond surface is of pivotal importance for quantum applications. Hydrogen-terminated diamond is promising for long spin coherence times and ease of controlling the charge states due to the low density of surface defects. However, it has so far been challenging to create negatively charged single NV centers with controllable spin states beneath a hydrogen-terminated surface because atmospheric adsorbates that act as acceptors induce surface holes. In this study, we optically detected the magnetic resonance of shallow single NV centers in hydrogen-terminated diamond through precise control of the nitrogen implantation fluence. Furthermore, we found that the probability of detecting the resonance was enhanced by reducing the surface acceptor density through passivation of the hydrogen-terminated surface with hexagonal boron nitride without air exposure. This control method opens up new opportunities for using NV centers in quantum applications.
RESUMEN
Superconducting quantum interference devices (SQUIDs) are currently used as magnetic flux detectors with ultra-high sensitivity for various applications such as medical diagnostics and magnetic material microstructure analysis. Single-crystalline superconducting boron-doped diamond is an excellent candidate for fabricating high-performance SQUIDs because of its robustness and high transition temperature, critical current density, and critical field. Here, we propose a fabrication process for a single-crystalline boron-doped diamond Josephson junction with regrowth-induced step edge structure and demonstrate the first operation of a single-crystalline boron-doped diamond SQUID above 2 K. We demonstrate that the step angle is a significant parameter for forming the Josephson junction and that the step angle can be controlled by adjusting the microwave plasma-enhanced chemical vapour deposition conditions of the regrowth layer. The fabricated junction exhibits superconductor-weak superconductor-superconductor-type behaviour without hysteresis and a high critical current density of 5800 A/cm2.
RESUMEN
The ionic-liquid-gating technique can be applied to the search for novel physical phenomena at low temperatures because of its wide controllability of the charge carrier density. Ionic-liquid-gated field-effect transistors are often fragile upon cooling, however, because of the large difference between the thermal expansion coefficients of frozen ionic liquids and solid target materials. In this paper, we provide a practical technique for setting up ionic-liquid-gated field-effect transistors for low-temperature measurements. It allows stable measurements and reduces the electronic inhomogeneity by reducing the shear strain generated in frozen ionic liquid.