Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(9): E1010-9, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25691740

RESUMEN

We examined the origins and functional evolution of the Shaker and KCNQ families of voltage-gated K(+) channels to better understand how neuronal excitability evolved. In bilaterians, the Shaker family consists of four functionally distinct gene families (Shaker, Shab, Shal, and Shaw) that share a subunit structure consisting of a voltage-gated K(+) channel motif coupled to a cytoplasmic domain that mediates subfamily-exclusive assembly (T1). We traced the origin of this unique Shaker subunit structure to a common ancestor of ctenophores and parahoxozoans (cnidarians, bilaterians, and placozoans). Thus, the Shaker family is metazoan specific but is likely to have evolved in a basal metazoan. Phylogenetic analysis suggested that the Shaker subfamily could predate the divergence of ctenophores and parahoxozoans, but that the Shab, Shal, and Shaw subfamilies are parahoxozoan specific. In support of this, putative ctenophore Shaker subfamily channel subunits coassembled with cnidarian and mouse Shaker subunits, but not with cnidarian Shab, Shal, or Shaw subunits. The KCNQ family, which has a distinct subunit structure, also appears solely within the parahoxozoan lineage. Functional analysis indicated that the characteristic properties of Shaker, Shab, Shal, Shaw, and KCNQ currents evolved before the divergence of cnidarians and bilaterians. These results show that a major diversification of voltage-gated K(+) channels occurred in ancestral parahoxozoans and imply that many fundamental mechanisms for the regulation of action potential propagation evolved at this time. Our results further suggest that there are likely to be substantial differences in the regulation of neuronal excitability between ctenophores and parahoxozoans.


Asunto(s)
Ctenóforos/genética , Evolución Molecular , Hydra/genética , Canales de Potasio KCNQ/genética , Filogenia , Canales de Potasio de la Superfamilia Shaker/genética , Secuencia de Aminoácidos , Animales , Ctenóforos/metabolismo , Bases de Datos de Proteínas , Humanos , Hydra/metabolismo , Canales de Potasio KCNQ/metabolismo , Ratones , Datos de Secuencia Molecular , Canales de Potasio de la Superfamilia Shaker/metabolismo , Xenopus laevis
2.
Nat Med ; 24(10): 1590-1598, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30177821

RESUMEN

Antibodies are the primary correlate of protection for most licensed vaccines; however, their mechanisms of protection may vary, ranging from physical blockade to clearance via the recruitment of innate immunity. Here, we uncover striking functional diversity in vaccine-induced antibodies that is driven by immunization site and is associated with reduced risk of SIV infection in nonhuman primates. While equivalent levels of protection were observed following intramuscular (IM) and aerosol (AE) immunization with an otherwise identical DNA prime-Ad5 boost regimen, reduced risk of infection was associated with IgG-driven antibody-dependent monocyte-mediated phagocytosis in the IM vaccinees, but with vaccine-elicited IgA-driven neutrophil-mediated phagocytosis in AE-immunized animals. Thus, although route-independent correlates indicate a critical role for phagocytic Fc-effector activity in protection from SIV, the site of immunization may drive this Fc activity via distinct innate effector cells and antibody isotypes. Moreover, the same correlates predicted protection from SHIV infection in a second nonhuman primate vaccine trial using a disparate IM canarypox prime-protein boost strategy, analogous to that used in the first moderately protective human HIV vaccine trial. These data identify orthogonal functional humoral mechanisms, initiated by distinct vaccination routes and immunization strategies, pointing to multiple, potentially complementary correlates of immunity that may support the rational design of a protective vaccine against HIV.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos/inmunología , Inmunidad Innata/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Vacunas/administración & dosificación , Vacunas contra el SIDA/uso terapéutico , Administración por Inhalación , Animales , Modelos Animales de Enfermedad , Vías de Administración de Medicamentos , Humanos , Inmunización , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/inmunología , Inyecciones Intramusculares , Fagocitosis/inmunología , Primates/inmunología , Primates/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Vacunas/efectos adversos
3.
J Gen Physiol ; 146(5): 357-74, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26503718

RESUMEN

Phosphatidylinositol 4,5-bisphosphate (PIP2) regulates Shaker K+ channels and voltage-gated Ca2+ channels in a bimodal fashion by inhibiting voltage activation while stabilizing open channels. Bimodal regulation is conserved in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, but voltage activation is enhanced while the open channel state is destabilized. The proposed sites of PIP2 regulation in these channels include the voltage-sensor domain (VSD) and conserved regions of the proximal cytoplasmic C terminus. Relatively little is known about PIP2 regulation of Ether-á-go-go (EAG) channels, a metazoan-specific family of K+ channels that includes three gene subfamilies, Eag (Kv10), Erg (Kv11), and Elk (Kv12). We examined PIP2 regulation of the Elk subfamily potassium channel human Elk1 to determine whether bimodal regulation is conserved within the EAG K+ channel family. Open-state stabilization by PIP2 has been observed in human Erg1, but the proposed site of regulation in the distal C terminus is not conserved among EAG family channels. We show that PIP2 strongly inhibits voltage activation of Elk1 but also stabilizes the open state. This stabilization produces slow deactivation and a mode shift in voltage gating after activation. However, removal of PIP2 has the net effect of enhancing Elk1 activation. R347 in the linker between the VSD and pore (S4-S5 linker) and R479 near the S6 activation gate are required for PIP2 to inhibit voltage activation. The ability of PIP2 to stabilize the open state also requires these residues, suggesting an overlap in sites central to the opposing effects of PIP2 on channel gating. Open-state stabilization in Elk1 requires the N-terminal eag domain (PAS domain + Cap), and PIP2-dependent stabilization is enhanced by a conserved basic residue (K5) in the Cap. Our data shows that PIP2 can bimodally regulate voltage gating in EAG family channels, as has been proposed for Shaker and HCN channels. PIP2 regulation appears fundamentally different for Elk and KCNQ channels, suggesting that, although both channel types can regulate action potential threshold in neurons, they are not functionally redundant.


Asunto(s)
Activación del Canal Iónico , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteína Elk-1 con Dominio ets/metabolismo , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Oocitos , Estructura Terciaria de Proteína , Proteína Elk-1 con Dominio ets/química , Proteína Elk-1 con Dominio ets/genética
4.
J Gen Physiol ; 141(6): 721-35, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23712551

RESUMEN

The Ether-a-go-go (EAG) superfamily of voltage-gated K(+) channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K(+) currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K(+) channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance-voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn(2+). Low pH similarly reduces Mg(2+) sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca(2+). Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K(+) currents observed in vivo.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Protones , Potenciales de Acción , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Calcio/farmacología , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/química , Concentración de Iones de Hidrógeno , Magnesio/farmacología , Ratones , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA