Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Geophys Res Lett ; 45(9): 4007-4016, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-30034050

RESUMEN

We present a general concept for evolutionary, collaborative, multiscale inversion of geophysical data, specifically applied to the construction of a first-generation Collaborative Seismic Earth Model. This is intended to address the limited resources of individual researchers and the often limited use of previously accumulated knowledge. Model evolution rests on a Bayesian updating scheme, simplified into a deterministic method that honors today's computational restrictions. The scheme is able to harness distributed human and computing power. It furthermore handles conflicting updates, as well as variable parameterizations of different model refinements or different inversion techniques. The first-generation Collaborative Seismic Earth Model comprises 12 refinements from full seismic waveform inversion, ranging from regional crustal- to continental-scale models. A global full-waveform inversion ensures that regional refinements translate into whole-Earth structure.

2.
Nat Commun ; 14(1): 1192, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864052

RESUMEN

The proliferation of seismic networks in Australia has laid the groundwork for high-resolution probing of the continental crust. Here we develop an updated 3D shear-velocity model using a large dataset containing nearly 30 years of seismic recordings from over 1600 stations. A recently-developed ambient noise imaging workflow enables improved data analysis by integrating asynchronous arrays across the continent. This model reveals fine-scale crustal structures at a lateral resolution of approximately 1-degree in most parts of the continent, highlighted by 1) shallow low velocities (<3.2 km/s) well correlated with the locations of known sedimentary basins, 2) consistently faster velocities beneath discovered mineral deposits, suggesting a whole-crustal control on the mineral deposition process, and 3) distinctive crustal layering and improved characterization of depth and sharpness of the crust-mantle transition. Our model sheds light on undercover mineral exploration and inspires future multi-disciplinary studies for a more comprehensive understanding of the mineral systems in Australia.

3.
Nat Geosci ; 15(7): 591-596, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35855838

RESUMEN

Oceanic crust forms at mid-ocean spreading centres through a combination of magmatic and tectonic processes, with the magmatic processes creating two distinct layers: the upper and the lower crust. While the upper crust is known to form from lava flows and basaltic dikes based on geophysical and drilling results, the formation of the gabbroic lower crust is still debated. Here we perform a full waveform inversion of wide-angle seismic data from relatively young (7-12-million-year-old) crust formed at the slow spreading Mid-Atlantic Ridge. The seismic velocity model reveals alternating, 400-500 m thick, high and low velocity layers with ±200 m/s velocity variations, below ~2 km from the oceanic basement. The uppermost low-velocity layer is consistent with hydrothermal alteration, defining the base of extensive hydrothermal circulation near the ridge axis. The underlying layering supports that the lower crust is formed through the intrusion of melt as sills at different depths, that cool and crystallise in situ. The layering extends up to 5-15 km distance along the seismic profile, covering 300,000-800,000 years, suggesting that this form of lower crustal accretion is a stable process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA