Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Plant Physiol ; 195(2): 1333-1346, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38446745

RESUMEN

Transposable elements (TEs) contribute to plant evolution, development, and adaptation to environmental changes, but the regulatory mechanisms are largely unknown. RNA-directed DNA methylation (RdDM) is 1 TE regulatory mechanism in plants. Here, we identified that novel ARGONAUTE 1 (AGO1)-binding Tudor domain proteins Precocious dissociation of sisters C/E (PDS5C/E) are involved in 24-nt siRNA production to establish RdDM on TEs in Arabidopsis thaliana. PDS5 family proteins are subunits of the eukaryote-conserved cohesin complex. However, the double mutant lacking angiosperm-specific subfamily PDS5C and PDS5E (pds5c/e) exhibited different developmental phenotypes and transcriptome compared with those of the double mutant lacking eukaryote-conserved subfamily PDS5A and PDS5B (pds5a/b), suggesting that the angiosperm-specific PDS5C/E subfamily has a unique function in angiosperm plants. Proteome and imaging analyses revealed that PDS5C/E interact with AGO1. The pds5c/e double mutant had defects in 24-nt siRNA accumulation and CHH DNA methylation on TEs. In addition, some lncRNAs that accumulated in the pds5c/e mutant were targeted by AGO1-loading 21-nt miRNAs and 21-nt siRNAs. These results indicate that PDS5C/E and AGO1 participate in 24-nt siRNA production for RdDM in the cytoplasm. These findings indicate that angiosperm plants evolved a new regulator, the PDS5C/E subfamily, to control the increase in TEs during angiosperm evolution.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , Metilación de ADN , ARN Interferente Pequeño , Metilación de ADN/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Regulación de la Expresión Génica de las Plantas , Dominio Tudor/genética , Elementos Transponibles de ADN/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Mutación/genética
2.
PLoS Genet ; 16(3): e1008637, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32187179

RESUMEN

Intronic regions of eukaryotic genomes accumulate many Transposable Elements (TEs). Intronic TEs often trigger the formation of transcriptionally repressive heterochromatin, even within transcription-permissive chromatin environments. Although TE-bearing introns are widely observed in eukaryotic genomes, their epigenetic states, impacts on gene regulation and function, and their contributions to genetic diversity and evolution, remain poorly understood. In this study, we investigated the genome-wide distribution of intronic TEs and their epigenetic states in the Oryza sativa genome, where TEs comprise 35% of the genome. We found that over 10% of rice genes contain intronic heterochromatin, most of which are associated with TEs and repetitive sequences. These heterochromatic introns are longer and highly enriched in promoter-proximal positions. On the other hand, introns also accumulate hypomethylated short TEs. Genes with heterochromatic introns are implicated in various biological functions. Transcription of genes bearing intronic heterochromatin is regulated by an epigenetic mechanism involving the conserved factor OsIBM2, mutation of which results in severe developmental and reproductive defects. Furthermore, we found that heterochromatic introns evolve rapidly compared to non-heterochromatic introns. Our study demonstrates that heterochromatin is a common epigenetic feature associated with actively transcribed genes in the rice genome.


Asunto(s)
Genoma de Planta/genética , Heterocromatina/genética , Intrones/genética , Oryza/genética , Transcripción Genética/genética , Cromatina/genética , Metilación de ADN/genética , Elementos Transponibles de ADN/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica/genética , Regiones Promotoras Genéticas/genética
3.
New Phytol ; 233(5): 2094-2110, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34532854

RESUMEN

Mangroves are adapted to harsh environments, such as high ultraviolet (UV) light, low nutrition, and fluctuating salinity in coastal zones. However, little is known about the transcriptomic and epigenomic basis of the resilience of mangroves due to limited available genome resources. We performed a de novo genome assembly and in natura epigenome analyses of the mangrove Bruguiera gymnorhiza, one of the dominant mangrove species. We also performed the first genome-guided transcriptome assembly for mangrove species. The 309 Mb of the genome is predicted to encode 34 403 genes and has a repeat content of 48%. Depending on its growing environment, the natural B. gymnorhiza population showed drastic morphological changes associated with expression changes in thousands of genes. Moreover, high-salinity environments induced genome-wide DNA hypermethylation of transposable elements (TEs) in the B. gymnorhiza. DNA hypermethylation was concurrent with the transcriptional regulation of chromatin modifier genes, suggesting robust epigenome regulation of TEs in the B. gymnorhiza genome under high-salinity environments. The genome and epigenome data in this study provide novel insights into the epigenome regulation of mangroves and a better understanding of the adaptation of plants to fluctuating, harsh natural environments.


Asunto(s)
Rhizophoraceae , Metilación de ADN/genética , Epigenómica , Perfilación de la Expresión Génica , Rhizophoraceae/genética , Salinidad , Árboles/genética
4.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576037

RESUMEN

Their high adaptability to difficult coastal conditions makes mangrove trees a valuable resource and an interesting model system for understanding the molecular mechanisms underlying stress tolerance and adaptation of plants to the stressful environmental conditions. In this study, we used RNA sequencing (RNA-Seq) for de novo assembling and characterizing the Bruguiera gymnorhiza (L.) Lamk leaf transcriptome. B. gymnorhiza is one of the most widely distributed mangrove species from the biggest family of mangroves; Rhizophoraceae. The de novo assembly was followed by functional annotations and identification of individual transcripts and gene families that are involved in abiotic stress response. We then compared the genome-wide expression profiles between two populations of B. gymnorhiza, growing under different levels of stress, in their natural habitats. One population living in high salinity environment, in the shore of the Pacific Ocean- Japan, and the other population living about one kilometre farther from the ocean, and next to the estuary of a river; in less saline and more brackish condition. Many genes involved in response to salt and osmotic stress, showed elevated expression levels in trees growing next to the ocean in high salinity condition. Validation of these genes may contribute to future salt-resistance research in mangroves and other woody plants. Furthermore, the sequences and transcriptome data provided in this study are valuable scientific resources for future comparative transcriptome research in plants growing under stressful conditions.


Asunto(s)
Presión Osmótica/efectos de los fármacos , Rhizophoraceae/genética , Estrés Fisiológico/genética , Transcriptoma/genética , Adaptación Fisiológica/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Anotación de Secuencia Molecular , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Rhizophoraceae/crecimiento & desarrollo , Salinidad , Tolerancia a la Sal/genética , Cloruro de Sodio/efectos adversos , Árboles
5.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34769393

RESUMEN

Mangroves are salt-tolerant plant species that grow in coastal saline water and are adapted to harsh environmental conditions. In this study, we de novo assembled and functionally annotated the transcriptome of Rhizophora stylosa, the widely distributed mangrove from the largest mangrove family (Rhizophoraceae). The final transcriptome consists of 200,491 unigenes with an average length, and N50 of 912.7 and 1334 base pair, respectively. We then compared the genome-wide expression profiles between the two morphologically distinct natural populations of this species growing under different levels of salinity depending on their distance from the ocean. Among the 200,491 unigenes, 40,253 were identified as differentially expressed between the two populations, while 15,741 and 24,512 were up- and down-regulated, respectively. Functional annotation assigned thousands of upregulated genes in saline environment to the categories related to abiotic stresses such as response to salt-, osmotic-, and oxidative-stress. Validation of those genes may contribute to a better understanding of adaptation in mangroves species. This study reported, for the first time, the transcriptome of R. stylosa, and the dynamic of it in response to salt stress and provided a valuable resource for elucidation of the molecular mechanism underlying the salt stress response in mangroves and other plants that live under stress.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Rhizophoraceae/metabolismo , Tolerancia a la Sal , Estrés Fisiológico , Transcriptoma , Árboles/metabolismo , Adaptación Fisiológica , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Rhizophoraceae/genética , Rhizophoraceae/crecimiento & desarrollo , Árboles/genética , Árboles/crecimiento & desarrollo
6.
PLoS Genet ; 11(4): e1005154, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25902052

RESUMEN

Epigenetic variations of phenotypes, especially those associated with DNA methylation, are often inherited over multiple generations in plants. The active and inactive chromatin states are heritable and can be maintained or even be amplified by positive feedback in a transgenerational manner. However, mechanisms controlling the transgenerational DNA methylation dynamics are largely unknown. As an approach to understand the transgenerational dynamics, we examined long-term effect of impaired DNA methylation in Arabidopsis mutants of the chromatin remodeler gene DDM1 (Decrease in DNA Methylation 1) through whole genome DNA methylation sequencing. The ddm1 mutation induces a drastic decrease in DNA methylation of transposable elements (TEs) and repeats in the initial generation, while also inducing ectopic DNA methylation at hundreds of loci. Unexpectedly, this ectopic methylation can only be seen after repeated self-pollination. The ectopic cytosine methylation is found primarily in the non-CG context and starts from 3' regions within transcription units and spreads upstream. Remarkably, when chromosomes with reduced DNA methylation were introduced from a ddm1 mutant into a DDM1 wild-type background, the ddm1-derived chromosomes also induced analogous de novo accumulation of DNA methylation in trans. These results lead us to propose a model to explain the transgenerational DNA methylation redistribution by genome-wide negative feedback. The global negative feedback, together with local positive feedback, would ensure robust and balanced differentiation of chromatin states within the genome.


Asunto(s)
Proteínas de Arabidopsis/genética , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Retroalimentación Fisiológica , Genoma de Planta , Factores de Transcripción/genética , Arabidopsis , Proteínas de Arabidopsis/biosíntesis , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Citosina , Elementos Transponibles de ADN/genética , Proteínas de Unión al ADN/biosíntesis , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Mutación , Factores de Transcripción/biosíntesis
7.
New Phytol ; 234(5): 1901-1902, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35383924
8.
Nucleic Acids Res ; 43(8): 3911-21, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25813042

RESUMEN

Genomes of higher eukaryotes, including plants, contain numerous transposable elements (TEs), that are often silenced by epigenetic mechanisms, such as histone modifications and DNA methylation. Although TE silencing adversely affects expression of nearby genes, recent studies reveal the presence of intragenic TEs marked by repressive heterochromatic epigenetic marks within transcribed genes. However, even for the well-studied plant model Arabidopsis thaliana, the abundance of intragenic TEs, how they are epigenetically regulated, and their potential impacts on host gene expression, remain unexplored. In this study, we comprehensively analyzed genome-wide distribution and epigenetic regulation of intragenic TEs in A. thaliana. Our analysis revealed that about 3% of TEs are located within gene bodies, dominantly at intronic regions. Most of them are shorter and less methylated than intergenic TEs, but they are still targeted by RNA-directed DNA methylation-dependent and independent pathways. Surprisingly, the heterochromatic epigenetic marks at TEs are maintained within actively transcribed genes. Moreover, the heterochromatic state of intronic TEs is critical for proper transcription of associated genes. Our study provides the first insight into how intragenic TEs affect the transcriptional landscape of the A. thaliana genome, and suggests the importance of epigenetic mechanisms for regulation of TEs within transcriptional gene units.


Asunto(s)
Arabidopsis/genética , Elementos Transponibles de ADN , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Metilación de ADN , Heterocromatina/metabolismo , Intrones , Transcripción Genética
9.
Plant Physiol ; 168(4): 1219-25, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26143255

RESUMEN

DNA methylation within transcribed genes is commonly found in diverse animals and plants. Here, we provide an overview of recent advances and the remaining mystery regarding intragenic DNA methylation.


Asunto(s)
Metilación de ADN/genética , ADN Intergénico/genética , ADN de Plantas/genética , Plantas/genética
10.
EMBO J ; 29(20): 3496-506, 2010 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-20834229

RESUMEN

In diverse eukaryotes, constitutively silent sequences, such as transposons and repeats, are marked by methylation at histone H3 lysine 9 (H3K9me). Although selective H3K9me is critical for maintaining genome integrity, mechanisms to exclude H3K9me from active genes remain largely unexplored. Here, we show in Arabidopsis that the exclusion depends on a histone demethylase gene, IBM1 (increase in BONSAI methylation). Loss-of-function ibm1 mutation results in ectopic H3K9me and non-CG methylation in thousands of genes. The ibm1-induced genic H3K9me depends on both histone methylase KYP/SUVH4 and DNA methylase CMT3, suggesting interdependence of two epigenetic marks--H3K9me and non-CG methylation. Notably, IBM1 enhances loss of H3K9me in transcriptionally de-repressed sequences. Furthermore, disruption of transcription in genes induces ectopic non-CG methylation, which mimics the loss of IBM1 function. We propose that active chromatin is stabilized by an autocatalytic loop of transcription and H3K9 demethylation. This process counteracts a similarly autocatalytic accumulation of silent epigenetic marks, H3K9me and non-CG methylation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Histona Demetilasas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Metilación de ADN , Elementos Transponibles de ADN/genética , Proteínas de Unión al ADN/metabolismo , Histona Demetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji , Mutación , Transcripción Genética
11.
Plant J ; 70(5): 750-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22269081

RESUMEN

Methylation of histone H3 lysine 9 (H3K9me) and small RNAs are associated with constitutively silent chromatin in diverse eukaryotes including plants. In plants, silent transposons are also marked by cytosine methylation, especially at non-CpG sites. Transposon-specific non-CpG methylation in plants is controlled by small RNAs and H3K9me. Although it is often assumed that small RNA directs H3K9me, interaction between small RNA and H3K9me has not been directly demonstrated in plants. We have previously shown that a mutation in the chromatin remodeling gene DDM1 (DECREASE IN DNA METHYLATION 1) induces a global decrease but a local increase of cytosine methylation and accumulation of small RNA at a locus called BONSAI. Here we show that de novo BONSAI methylation does not depend on RNAi but does depend on H3K9me. In mutants of H3K9 methyltransferase gene KRYPTONITE or the H3K9me-dependent DNA methyltransferase gene CHROMOMETHYALSE3, the ddm1-induced de novo cytosine methylation was abolished for all three contexts (CpG, CpHpG and CpHpH). Furthermore, RNAi mutants showed strong developmental defects when combined with the ddm1 mutation. Our results revealed unexpected interactions of epigenetic modifications that may be conserved among diverse eukaryotes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Cromatina/genética , Cromatina/metabolismo , ADN de Plantas/genética , ADN de Plantas/metabolismo , Proteínas de Unión al ADN/genética , ADN-Citosina Metilasas/genética , ADN-Citosina Metilasas/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Sitios Genéticos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Mutación , Polinización , Interferencia de ARN , Autofecundación , Factores de Transcripción/genética
12.
EMBO J ; 28(8): 1078-86, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-19262562

RESUMEN

Differential cytosine methylation of genes and transposons is important for maintaining integrity of plant genomes. In Arabidopsis, transposons are heavily methylated at both CG and non-CG sites, whereas the non-CG methylation is rarely found in active genes. Our previous genetic analysis suggested that a jmjC domain-containing protein IBM1 (increase in BONSAI methylation 1) prevents ectopic deposition of non-CG methylation, and this process is necessary for normal Arabidopsis development. Here, we directly determined the genomic targets of IBM1 through high-resolution genome-wide analysis of DNA methylation. The ibm1 mutation induced extensive hyper-methylation in thousands of genes. Transposons were unaffected. Notably, long transcribed genes were most severely affected. Methylation of genes is limited to CG sites in wild type, but CHG sites were also methylated in the ibm1 mutant. The ibm1-induced hyper-methylation did not depend on previously characterized components of the RNAi-based DNA methylation machinery. Our results suggest novel transcription-coupled mechanisms to direct genic methylation not only at CG but also at CHG sites. IBM1 prevents the CHG methylation in genes, but not in transposons.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metilación de ADN , Proteínas de Unión al ADN/genética , Genoma de Planta , Histona Demetilasas con Dominio de Jumonji , Mutación , Estructura Terciaria de Proteína , Interferencia de ARN , Transcripción Genética
13.
Nat Genet ; 34(1): 65-9, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12669067

RESUMEN

In mammals, the DNA methyltransferase 1 (Dnmt1) faithfully copies the pattern of cytosine methylation at CpG sites to the newly synthesized strand, and this is essential for epigenetic inheritance. In Arabidopsis thaliana, several DNA methyltransferases or chromatin modifiers coupled to methylation changes have been characterized, and mutations that cause loss of their function are recessive. This is surprising because plant gametogenesis includes postmeiotic DNA replication in haploid nuclei before fertilization. Therefore, the recessive character of the mutations excludes the affected components from a regulatory role in postmeiotic maintenance or modification of epigenetic states. Here we show, however, that depletion of A. thaliana MET1, a homolog of mammalian Dnmt1 (ref. 8), results in immense epigenetic diversification of gametes. This diversity seems to be a consequence of passive postmeiotic demethylation, leading to gametes with fully demethylated and hemidemethylated DNA, followed by remethylation of hemimethylated templates once MET1 is again supplied in a zygote.


Asunto(s)
Arabidopsis/genética , Islas de CpG , Metilación de ADN , ADN de Plantas/genética , ADN de Plantas/metabolismo , Animales , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cruzamientos Genéticos , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Plantas/química , Genes de Plantas , Mutación
14.
Nat Commun ; 14(1): 3248, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277361

RESUMEN

Transposable elements (TEs) are accumulated in both intergenic and intragenic regions in plant genomes. Intragenic TEs often act as regulatory elements of associated genes and are also co-transcribed with genes, generating chimeric TE-gene transcripts. Despite the potential impact on mRNA regulation and gene function, the prevalence and transcriptional regulation of TE-gene transcripts are poorly understood. By long-read direct RNA sequencing and a dedicated bioinformatics pipeline, ParasiTE, we investigated the transcription and RNA processing of TE-gene transcripts in Arabidopsis thaliana. We identified a global production of TE-gene transcripts in thousands of A. thaliana gene loci, with TE sequences often being associated with alternative transcription start sites or transcription termination sites. The epigenetic state of intragenic TEs affects RNAPII elongation and usage of alternative poly(A) signals within TE sequences, regulating alternative TE-gene isoform production. Co-transcription and inclusion of TE-derived sequences into gene transcripts impact regulation of RNA stability and environmental responses of some loci. Our study provides insights into TE-gene interactions that contributes to mRNA regulation, transcriptome diversity, and environmental responses in plants.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Elementos Transponibles de ADN/genética , ARN Interferente Pequeño/genética , ARN Mensajero/genética , Análisis de Secuencia de ARN
15.
Plant Cell Physiol ; 53(5): 766-84, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22302712

RESUMEN

DNA methylation is a type of epigenetic marking that strongly influences chromatin structure and gene expression in plants and mammals. Over the past decade, DNA methylation has been intensively investigated in order to elucidate its control mechanisms. These studies have shown that small RNAs are involved in the induction of DNA methylation, that there is a relationship between DNA methylation and histone methylation, and that the base excision repair pathway has an important role in DNA demethylation. Some aspects of DNA methylation have also been shown to be shared with mammals, suggesting that the regulatory pathways are, in part at least, evolutionarily conserved. Considerable progress has been made in elucidating the mechanisms that control DNA methylation; however, many aspects of the mechanisms that read the information encoded by DNA methylation and mediate this into downstream regulation remain uncertain, although some candidate proteins have been identified. DNA methylation has a vital role in the inactivation of transposons, suggesting that DNA methylation is a key factor in the evolution and adaptation of plants.


Asunto(s)
Metilación de ADN/genética , Elementos Transponibles de ADN/genética , Histonas/metabolismo , Plantas/genética , Procesamiento Proteico-Postraduccional/genética , ARN de Planta/metabolismo , Plantas/enzimología , ARN de Planta/genética
16.
Front Plant Sci ; 13: 899105, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923888

RESUMEN

Transposable elements are present in a wide variety of organisms; however, our understanding of the diversity of mechanisms involved in their activation is incomplete. In this study, we analyzed the transcriptional activation of the ONSEN retrotransposon, which is activated by high-temperature stress in Arabidopsis thaliana. We found that its transcription is significantly higher in the Japanese ecotype Kyoto. Considering that transposons are epigenetically regulated, DNA methylation levels were analyzed, revealing that CHH methylation was reduced in Kyoto compared to the standard ecotype, Col-0. A mutation was also detected in the Kyoto CMT2 gene, encoding a CHH methyltransferase, suggesting that it may be responsible for increased expression of ONSEN. CHH methylation is controlled by histone modifications through a self-reinforcing loop between DNA methyltransferase and histone methyltransferase. Analysis of these modifications revealed that the level of H3K9me2, a repressive histone marker for gene expression, was lower in Kyoto than in Col-0. The level of another repressive histone marker, H3K27me1, was decreased in Kyoto; however, it was not impacted in a Col-0 cmt2 mutant. Therefore, in addition to the CMT2 mutation, other factors may reduce repressive histone modifications in Kyoto.

17.
Methods Mol Biol ; 2093: 81-92, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32088890

RESUMEN

Histone proteins are crucial in the study of chromatin dynamics owing to their wide-ranging implications in the regulation of gene expression. Modifications of histones are integral to these regulatory processes in concert with associated proteins, such as transcription factors and coactivators. One of the biochemical techniques available to enhance analysis of histone proteins is chemical derivatization using propionic anhydride. In this protocol, we describe the use of propionylation to efficiently derivatize acid-extracted histones from rice. We also synthesize H3 and H4 tryptic peptides, thus mimicking the nature of derivatized extracted peptides to aid in identification and quantification using targeted-mass spectrometry. Here we make available the masses of the precursor ions and the retention times (RT) of each synthesized peptide. These provide useful information to facilitate histone data analysis. Lastly, we note that we will distribute these synthetic peptides in nanomolar (nM) concentrations to those who wish to utilize them for assays and further experimental studies.


Asunto(s)
Histonas/genética , Oryza/genética , Péptidos/genética , Acetilación , Anhídridos/metabolismo , Cromatina/genética , Expresión Génica/genética , Propionatos/metabolismo , Espectrometría de Masas en Tándem/métodos
18.
Nat Commun ; 11(1): 3224, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591528

RESUMEN

In plants, epigenetic regulation is critical for silencing transposons and maintaining proper gene expression. However, its impact on the genome-wide transcription initiation landscape remains elusive. By conducting a genome-wide analysis of transcription start sites (TSSs) using cap analysis of gene expression (CAGE) sequencing, we show that thousands of TSSs are exclusively activated in various epigenetic mutants of Arabidopsis thaliana and referred to as cryptic TSSs. Many have not been identified in previous studies, of which up to 65% are contributed by transposons. They possess similar genetic features to regular TSSs and their activation is strongly associated with the ectopic recruitment of RNAPII machinery. The activation of cryptic TSSs significantly alters transcription of nearby TSSs, including those of genes important for development and stress responses. Our study, therefore, sheds light on the role of epigenetic regulation in maintaining proper gene functions in plants by suppressing transcription from cryptic TSSs.


Asunto(s)
Arabidopsis/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Transcripción Genética , Secuencia de Bases , Secuencia de Consenso/genética , Metilación de ADN/genética , ADN Polimerasa beta/metabolismo , Elementos Transponibles de ADN/genética , Genes de Plantas , Mutación/genética , ARN Polimerasa II/metabolismo , Sitio de Iniciación de la Transcripción , Transcriptoma/genética
19.
Nat Commun ; 11(1): 3115, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32561756

RESUMEN

Reproduction-specific small RNAs are vital regulators of germline development in animals and plants. MicroRNA2118 (miR2118) is conserved in plants and induces the production of phased small interfering RNAs (phasiRNAs). To reveal the biological functions of miR2118, we describe here rice mutants with large deletions of the miR2118 cluster. Our results demonstrate that the loss of miR2118 causes severe male and female sterility in rice, associated with marked morphological and developmental abnormalities in somatic anther wall cells. Small RNA profiling reveals that miR2118-dependent 21-nucleotide (nt) phasiRNAs in the anther wall are U-rich, distinct from the phasiRNAs in germ cells. Furthermore, the miR2118-dependent biogenesis of 21-nt phasiRNAs may involve the Argonaute proteins OsAGO1b/OsAGO1d, which are abundant in anther wall cell layers. Our study highlights the site-specific differences of phasiRNAs between somatic anther wall and germ cells, and demonstrates the significance of miR2118/U-phasiRNA functions in anther wall development and rice reproduction.


Asunto(s)
Flores/crecimiento & desarrollo , MicroARNs/metabolismo , Oryza/crecimiento & desarrollo , ARN de Planta/metabolismo , ARN Interferente Pequeño/biosíntesis , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Mutación , Organogénesis de las Plantas/genética , Oryza/genética , Epidermis de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente
20.
J Biochem ; 164(5): 323-328, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010918

RESUMEN

Genomes of animals and plants contain a large number of transposable elements (TEs). TEs often transpose into genic regions, affecting expression of surrounding genes. Intragenic TEs mostly reside in introns, and in much the same way as intergenic TEs, they are targeted by repressive epigenetic marks for transcriptional silencing. Silenced intragenic TEs generally co-repress expression of associated genes, while in some cases they significantly enhance splicing and transcript elongation. Genomes have evolved molecular mechanisms that allow the presence of silenced TEs within transcriptionally permissive chromatin environments. Epigenetic modulation of intragenic TEs often contributes to gene regulation, phenotypic expression, and genome evolution.


Asunto(s)
Elementos Transponibles de ADN/genética , Epigénesis Genética/genética , Animales , Humanos , Plantas/genética , Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA