Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Traffic ; 19(2): 87-104, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29105235

RESUMEN

Chromosome large-scale organization is a beautiful example of the interplay between physics and biology. DNA molecules are polymers and thus belong to the class of molecules for which physicists have developed models and formulated testable hypotheses to understand their arrangement and dynamic properties in solution, based on the principles of polymer physics. Biologists documented and discovered the biochemical basis for the structure, function and dynamic spatial organization of chromosomes in cells. The underlying principles of chromosome organization have recently been revealed in unprecedented detail using high-resolution chromosome capture technology that can simultaneously detect chromosome contact sites throughout the genome. These independent lines of investigation have now converged on a model in which DNA loops, generated by the loop extrusion mechanism, are the basic organizational and functional units of the chromosome.


Asunto(s)
Cromatina/genética , Cromosomas/genética , ADN , Genoma/genética , Polímeros , Animales , Humanos , Modelos Biológicos
2.
Proc Natl Acad Sci U S A ; 111(48): 16990-4, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25404324

RESUMEN

All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.


Asunto(s)
Evolución Biológica , Biología Celular , Células/química , Células/metabolismo , Animales , Archaea/química , Archaea/citología , Archaea/metabolismo , Bacterias/química , Bacterias/citología , Bacterias/metabolismo , Eucariontes/química , Eucariontes/citología , Eucariontes/metabolismo , Humanos
3.
Curr Biol ; 17(16): R643-5, 2007 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-17714654

RESUMEN

Alp7/TACC has been identified as an important target for Ran GTPase in spindle formation in fission yeast. This discovery underlines a general role for Ran in orchestrating mitosis in all eukaryotes.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Huso Acromático/metabolismo , Proteína de Unión al GTP ran/metabolismo , Schizosaccharomyces/metabolismo
4.
Dev Cell ; 9(6): 729-33, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16363093

RESUMEN

The International Symposium on Ran and the Cell Cycle was held on October 1-4, 2005, at the Awaji Island Resort near Osaka, to celebrate the career and scientific achievements of Professor Takeharu Nishimoto. One hundred of his former lab members, collaborators and other scientific colleagues from around the world attended the symposium organized by Mary Dasso (National Institutes of Health) and Yoshihiro Yoneda (Osaka University). The program was divided into sessions on cell cycle and chromosomes, nuclear import and export of proteins and RNA, nuclear envelope and the nuclear pore complex, and RCC1 and chromatin. Dr. Nishimoto's retirement from Kyushu University is a perfect time to look back at the history of Ran and RCC1, assess the current state of the field, and discuss the challenges that remain in order to unravel the complexities of the Ran GTPase system.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Nucleares/metabolismo , Proteína de Unión al GTP ran/metabolismo , Transporte Biológico , Humanos , Membrana Nuclear , Poro Nuclear
5.
Curr Biol ; 15(1): R23-6, 2005 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-15649347

RESUMEN

A new study shows that the filamentous fungus, Aspergillus nidulans, which has a closed mitosis, does not maintain a continuous permeability barrier during mitosis. This work challenges current views of the differences between closed and open mitosis and has implications for understanding mitotic specific changes in the nuclear pore complex and Ran GTPase system in lower eukaryotes.


Asunto(s)
Aspergillus nidulans/citología , GTP Fosfohidrolasas/fisiología , Mitosis/fisiología , Poro Nuclear/metabolismo , Proteína de Unión al GTP ran/fisiología , Poro Nuclear/fisiología , Permeabilidad
6.
Mol Biol Cell ; 16(1): 385-95, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15525673

RESUMEN

During mitosis, the spindle assembly checkpoint (SAC) responds to faulty attachments between kinetochores and the mitotic spindle by imposing a metaphase arrest until the defect is corrected, thereby preventing chromosome missegregation. A genetic screen to isolate SAC mutants in fission yeast yielded point mutations in three fission yeast SAC genes: mad1, bub3, and bub1. The bub1-A78V mutant is of particular interest because it produces a wild-type amount of protein that is mutated in the conserved but uncharacterized Mad3-like region of Bub1p. Characterization of mutant cells demonstrates that the alanine at position 78 in the Mad3-like domain of Bub1p is required for: 1) cell cycle arrest induced by SAC activation; 2) kinetochore accumulation of Bub1p in checkpoint-activated cells; 3) recruitment of Bub3p and Mad3p, but not Mad1p, to kinetochores in checkpoint-activated cells; and 4) nuclear accumulation of Bub1p, Bub3p, and Mad3p, but not Mad1p, in cycling cells. Increased targeting of Bub1p-A78V to the nucleus by an exogenous nuclear localization signal does not significantly increase kinetochore localization or SAC function, but GFP fused to the isolated Bub1p Mad 3-like accumulates in the nucleus. These data indicate that Bub1p-A78V is defective in both nuclear accumulation and kinetochore targeting and that a threshold level of nuclear Bub1p is necessary for the nuclear accumulation of Bub3p and Mad3p.


Asunto(s)
Proteínas de Ciclo Celular/genética , Mutación , Proteínas Quinasas/genética , Schizosaccharomyces/genética , Huso Acromático , Alanina/química , Alelos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Núcleo Celular/metabolismo , Proteínas Fúngicas , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Interfase , Cinetocoros/metabolismo , Metafase , Microscopía Fluorescente , Mitosis , Modelos Genéticos , Mutagénesis Sitio-Dirigida , Proteínas Nucleares , Mutación Puntual , Proteínas Serina-Treonina Quinasas , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe
7.
Mol Cell Biol ; 22(24): 8491-505, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12446769

RESUMEN

Misregulation of the evolutionarily conserved GTPase Ran in fission yeast results in defects in several cellular processes in cells that are competent for nucleocytoplasmic protein transport. These results suggest that transport is neither the only nor the primary Ran-dependent process in living cells. The ability of Ran to independently regulate multiple cellular processes in vivo is demonstrated by showing that (i) eight different transport-competent RanGEF (guanine nucleotide exchange factor) mutants have defects in mitotic spindle formation; (ii) the RanGEF temperature-sensitive mutant pim1-d1 has abnormal actin ring structures at the septum. Overexpression of Imp2p, which specifically destabilizes these structures, restores viability. (iii) Ran-dependent processes differ in their requirements for active Ran in vivo. Microtubule function, cytokinesis, and nuclear envelope structure are the Ran-dependent processes most sensitive to the amount of Ran protein in the cell, whereas nucleocytoplasmic protein transport is the most robust. Therefore, the ability of Ran from Schizosaccharomyces pombe to independently regulate multiple cellular processes may reflect differences in its interactions with the binding proteins that mediate these functions and explain the complex phenotypic consequences of its misregulation in vivo.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , División Celular/fisiología , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Proteína de Unión al GTP ran/metabolismo , Ciclo Celular/fisiología , Núcleo Celular/metabolismo , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Endopeptidasas/metabolismo , Genes Fúngicos , Genes cdc , Microtúbulos/efectos de los fármacos , Mutación , Fenotipo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Huso Acromático/metabolismo , Tiabendazol/farmacología , Proteína de Unión al GTP ran/genética
8.
Mol Cell Biol ; 24(14): 6379-92, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15226438

RESUMEN

We have characterized Schizosaccharomyces pombe open reading frames encoding potential orthologues of constituents of the evolutionarily conserved Saccharomyces cerevisiae Nup84 vertebrate Nup107-160 nuclear pore subcomplex, namely Nup133a, Nup133b, Nup120, Nup107, Nup85, and Seh1. In spite of rather weak sequence conservation, in vivo analyses demonstrated that these S. pombe proteins are localized at the nuclear envelope. Biochemical data confirmed the organization of these nucleoporins within conserved complexes. Although examination of the S. cerevisiae and S. pombe deletion mutants revealed different viability phenotypes, functional studies indicated that the involvement of this complex in nuclear pore distribution and mRNA export has been conserved between these highly divergent yeasts. Unexpectedly, microscopic analyses of some of the S. pombe mutants revealed cell division defects at the restrictive temperature (abnormal septa and mitotic spindles and chromosome missegregation) that were reminiscent of defects occurring in several S. pombe GTPase Ran (Ran(Sp))/Spi1 cycle mutants. Furthermore, deletion of nup120 moderately altered the nuclear location of Ran(Sp)/Spi1, whereas overexpression of a nonfunctional Ran(Sp)/Spi1-GFP allele was specifically toxic in the Deltanup120 and Deltanup133b mutant strains, indicating a functional and genetic link between constituents of the S. pombe Nup107-120 complex and of the Ran(Sp)/Spi1 pathway.


Asunto(s)
División Celular/fisiología , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/fisiología , Proteína de Unión al GTP ran/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Animales , Supervivencia Celular , Cromosomas Fúngicos , Humanos , Sustancias Macromoleculares , Mutación , Sistemas de Lectura Abierta , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Temperatura , Proteína de Unión al GTP ran/genética
9.
Mol Biol Cell ; 15(4): 1793-801, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14767062

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) Vpr is a 15-kDa accessory protein that contributes to several steps in the viral replication cycle and promotes virus-associated pathology. Previous studies demonstrated that Vpr inhibits G2/M cell cycle progression in both human cells and in the fission yeast Schizosaccharomyces pombe. Here, we report that, upon induction of vpr expression, fission yeast exhibited numerous defects in the assembly and function of the mitotic spindle. In particular, two spindle pole body proteins, sad1p and the polo kinase plo1p, were delocalized in vpr-expressing yeast cells, suggesting that spindle pole body integrity was perturbed. In addition, nuclear envelope structure, contractile actin ring formation, and cytokinesis were also disrupted. Similar Vpr-induced defects in mitosis and cytokinesis were observed in human cells, including aberrant mitotic spindles, multiple centrosomes, and multinucleate cells. These defects in cell division and centrosomes might account for some of the pathological effects associated with HIV-1 infection.


Asunto(s)
Núcleo Celular/metabolismo , Centrosoma/metabolismo , Productos del Gen vpr/fisiología , Mitosis , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , División Celular , Células Cultivadas , Quinasa de Punto de Control 2 , Proteínas de Drosophila/metabolismo , Fase G2 , Células HeLa , Humanos , Mutación , Plásmidos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces , Huso Acromático , Factores de Tiempo , Transfección , Venas Umbilicales/citología
10.
Genetics ; 171(1): 7-21, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15937127

RESUMEN

The nuclear import of classical nuclear localization signal-containing proteins depends on importin-alpha transport receptors. In budding yeast there is a single importin-alpha gene and in higher eukaryotes there are multiple importin-alpha-like genes, but in fission yeast there are two: the previously characterized cut15 and the more recently identified imp1. Like other importin-alpha family members, Imp1p supports nuclear protein import in vitro. In contrast to cut15, imp1 is not essential for viability, but imp1delta mutant cells exhibit a telophase delay and mild temperature-sensitive lethality. Differences in the cellular functions that depend on Imp1p and Cut15p indicate that they each have unique physiological roles. They also have common roles because the imp1delta and the cut15-85 temperature-sensitive mutations are synthetically lethal; overexpression of cut15 partially suppresses the temperature sensitivity, but not the mitotic delay in imp1delta cells; and overexpression of imp1 partially suppresses the mitotic defect in cut15-85 cells but not the loss of viability. Both Imp1p and Cut15p are required for the efficient nuclear import of both an SV40 nuclear localization signal-containing reporter protein and the Pap1p component of the stress response MAP kinase pathway. Imp1p and Cut15p are essential for efficient nuclear protein import in S. pombe.


Asunto(s)
Ciclo Celular/fisiología , Núcleo Celular/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , alfa Carioferinas/genética , Transporte Activo de Núcleo Celular/fisiología , Secuencia de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Letales/genética , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Datos de Secuencia Molecular , Mutación , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Estrés Oxidativo , Fenotipo , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , alfa Carioferinas/metabolismo
12.
Curr Biol ; 24(22): R1099-103, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25458223

RESUMEN

The origin of the nucleus at the prokaryote-to-eukaryote transition represents one of the most important events in the evolution of cellular organization. The nuclear envelope encircles the chromosomes in interphase and is a selectively permeable barrier between the nucleoplasm and cytoplasm and an organizational scaffold for the nucleus. It remains intact in the 'closed' mitosis of some yeasts, but loses its integrity in the 'open' mitosis of mammals. Instances of both types of mitosis within two evolutionary clades indicate multiple evolutionary transitions between open and closed mitosis, although the underlying genetic changes that influenced these transitions remain unknown. A survey of the diversity of mitotic nuclei that fall between these extremes is the starting point from which to determine the physiologically relevant characteristics distinguishing open from closed mitosis and to understand how they evolved and why they are retained in present-day organisms. The field is now poised to begin addressing these issues by defining and documenting patterns of mitotic nuclear variation within and among species and mapping them onto a phylogenic tree. Deciphering the evolutionary history of open and closed mitosis will complement cell biological and genetic approaches aimed at deciphering the fundamental organizational principles of the nucleus.


Asunto(s)
Evolución Biológica , Mitosis/fisiología , Animales , Núcleo Celular/metabolismo , Núcleo Celular/fisiología , Núcleo Celular/ultraestructura , Modelos Biológicos , Membrana Nuclear/metabolismo , Membrana Nuclear/fisiología
13.
Nucleus ; 4(5): 379-89, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24021962

RESUMEN

The spatial organization of the genome inside the nucleus affects many nuclear processes, such as DNA replication, DNA repair, and gene transcription. In metazoans, the nuclear periphery harbors mainly repressed genes that associate with the nuclear lamina. This review discusses how peripheral positioning is connected to transcriptional regulation in yeasts. Tethering of reporter genes to the nuclear envelope was found to result in transcriptional silencing. Similarly, repression of the silent mating type loci and subtelomeric genes is influenced by their position close to the nuclear envelope. In contrast, active genes are bound by nucleoporins and inducible genes associate with the nuclear pore complex upon activation. Taken together, these results portray the nuclear envelope as a platform for transcriptional regulation, both through activation at nuclear pores and silencing at the nuclear envelope.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Membrana Nuclear/genética , Transcripción Genética/genética , Levaduras/citología , Levaduras/genética , Animales , Genoma Fúngico/genética , Humanos , Telómero/genética
14.
Nucleus ; 3(1): 60-76, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22540024

RESUMEN

In animal cells the nuclear lamina, which consists of lamins and lamin-associated proteins, serves several functions: it provides a structural scaffold for the nuclear envelope and tethers proteins and heterochromatin to the nuclear periphery. In yeast, proteins and large heterochromatic domains including telomeres are also peripherally localized, but there is no evidence that yeast have lamins or a fibrous nuclear envelope scaffold. Nonetheless, we found that the Lem2 and Man1 proteins of the fission yeast Schizosaccharomyces pombe, evolutionarily distant relatives of the Lap2/Emerin/Man1 (LEM) sub-family of animal cell lamin-associated proteins, perform fundamental functions of the animal cell lamina. These integral inner nuclear membrane localized proteins, with nuclear localized DNA binding Helix-Extension-Helix (HEH) domains, impact nuclear envelope structure and integrity, are essential for the enrichment of telomeres at the nuclear periphery and by means of their HEH domains anchor chromatin, most likely transcriptionally repressed heterochromatin, to the nuclear periphery. These data indicate that the core functions of the nuclear lamina are conserved between fungi and animal cells and can be performed in fission yeast, without lamins or other intermediate filament proteins.


Asunto(s)
Lámina Nuclear/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Animales , Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Transporte de Proteínas , Schizosaccharomyces/citología
15.
Curr Biol ; 20(21): R923-5, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21056831

RESUMEN

The fission yeast Schizosaccharomyces pombe undergoes closed mitosis but 'virtual nuclear envelope breakdown' at anaphase of meiosis II, in which the nuclear envelope is structurally closed but functionally open.


Asunto(s)
Anafase/fisiología , Meiosis/fisiología , Membrana Nuclear/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Citoplasma/metabolismo , Membrana Nuclear/fisiología , Membrana Nuclear/ultraestructura , Permeabilidad , Schizosaccharomyces/citología , Schizosaccharomyces/ultraestructura , Proteínas de Schizosaccharomyces pombe/análisis
16.
J Cell Sci ; 122(Pt 14): 2464-72, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19571115

RESUMEN

The double lipid bilayer of the nuclear envelope (NE) remains intact during closed mitosis. In the fission yeast Schizosaccharomyces pombe, the intranuclear mitotic spindle has envelope-embedded spindle pole bodies (SPB) at its ends. As the spindle elongates and the nucleus divides symmetrically, nuclear volume remains constant but nuclear area rapidly increases by 26%. When Ran-GTPase function is compromised in S. pombe, nuclear division is strikingly asymmetrical and the newly synthesized SPB is preferentially associated with the smaller nucleus, indicative of a Ran-dependent SPB defect that interferes with symmetrical nuclear division. A second defect, which specifically influences the NE, results in breakage of the NE upon spindle elongation. This defect, but not asymmetric nuclear division, is partially rescued by slowing spindle elongation, stimulating endoplasmic reticulum (ER) proliferation or changing conformation of the ER membrane. We propose that redistribution of lipid within the ER-NE network is crucial for mitosis-specific NE changes in both open and closed mitosis.


Asunto(s)
Forma del Núcleo Celular , Retículo Endoplásmico/enzimología , Mitosis/fisiología , Membrana Nuclear/enzimología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Huso Acromático/enzimología , Proteína de Unión al GTP ran/metabolismo , Proteasas ATP-Dependientes/metabolismo , Membranas Intracelulares/enzimología , Lípidos de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Serina Endopeptidasas/metabolismo , Temperatura , Factores de Tiempo , Proteína de Unión al GTP ran/genética
17.
Dev Dyn ; 236(12): 3427-35, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17969147

RESUMEN

Cdc25 phosphatases are required for eukaryotic cell cycle progression. To investigate mechanisms governing spatiotemporal dynamics of cell cycle progression during vertebrate development, we isolated two cdc25 genes from the zebrafish, Danio rerio, cdc25a, and cdc25d. We propose that Zebrafish cdc25a is the zebrafish orthologue of the tetrapod Cdc25A genes, while cdc25d is of indeterminate origin. We show that both genes have proliferation promoting activity, but that only cdc25d can complement a Schizosaccharomyces pombe loss of function cdc25 mutation. We present expression data demonstrating that cdc25d expression is very limited during early development, while cdc25a is widely expressed and consistent with the mitotic activity in previously identified mitotic domains of the post-blastoderm zebrafish embryo. Finally, we show that cdc25a can accelerate the entry of post-blastoderm cells into mitosis, suggesting that levels of cdc25a are rate limiting for cell cycle progression during gastrulation.


Asunto(s)
Pez Cebra/embriología , Pez Cebra/genética , Fosfatasas cdc25/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Ciclo Celular/genética , Clonación Molecular , Cartilla de ADN/genética , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Genes Fúngicos , Prueba de Complementación Genética , Datos de Secuencia Molecular , Filogenia , Schizosaccharomyces/citología , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Homología de Secuencia de Aminoácido
18.
PLoS One ; 2(9): e948, 2007 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-17895989

RESUMEN

It has long been known that during the closed mitosis of many unicellular eukaryotes, including the fission yeast (Schizosaccharomyces pombe), the nuclear envelope remains intact while the nucleus undergoes a remarkable sequence of shape transformations driven by elongation of an intranuclear mitotic spindle whose ends are capped by spindle pole bodies embedded in the nuclear envelope. However, the mechanical basis of these normal cell cycle transformations, and abnormal nuclear shapes caused by intranuclear elongation of microtubules lacking spindle pole bodies, remain unknown. Although there are models describing the shapes of lipid vesicles deformed by elongation of microtubule bundles, there are no models describing normal or abnormal shape changes in the nucleus. We describe here a novel biophysical model of interphase nuclear geometry in fission yeast that accounts for critical aspects of the mechanics of the fission yeast nucleus, including the biophysical properties of lipid bilayers, forces exerted on the nuclear envelope by elongating microtubules, and access to a lipid reservoir, essential for the large increase in nuclear surface area during the cell cycle. We present experimental confirmation of the novel and non-trivial geometries predicted by our model, which has no free parameters. We also use the model to provide insight into the mechanical basis of previously described defects in nuclear division, including abnormal nuclear shapes and loss of nuclear envelope integrity. The model predicts that (i) despite differences in structure and composition, fission yeast nuclei and vesicles with fluid lipid bilayers have common mechanical properties; (ii) the S. pombe nucleus is not lined with any structure with shear resistance, comparable to the nuclear lamina of higher eukaryotes. We validate the model and its predictions by analyzing wild type cells in which ned1 gene overexpression causes elongation of an intranuclear microtubule bundle that deforms the nucleus of interphase cells.


Asunto(s)
Núcleo Celular/metabolismo , Vesículas Citoplasmáticas/fisiología , Schizosaccharomyces/fisiología , Ciclo Celular/fisiología , Núcleo Celular/ultraestructura , División del Núcleo Celular/fisiología , Microscopía Electrónica , Mitosis/fisiología , Modelos Biológicos , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo
19.
Methods ; 33(3): 226-38, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15157890

RESUMEN

The nuclear envelope is essential for compartmentalizing the nucleus from the cytoplasm in all eukaryotic cells. There is a tremendous flux of both RNA and proteins across the nuclear envelope, which is intact throughout the entire cell cycle of yeasts but breaks down during mitosis of animal cells. Transport across the nuclear envelope requires the recognition of cargo molecules by receptors, docking at the nuclear pore, transit through the nuclear pore, and then dissociation of the cargo from the receptor. This process depends on the RanGTPase system, transport receptors, and the nuclear pore complex. We provide an overview of the nuclear transport process, with particular emphasis on the fission yeast Schizosaccharomyces pombe, including strategies for predicting and experimentally verifying the signals that determine the sub-cellular localization of a protein of interest. We also describe a variety of reagents and experimental strategies, including the use of mutants and chemical inhibitors, to study nuclear protein import, nuclear protein export, nucleocytoplasmic protein shuttling, and mRNA export in fission yeast. The RanGTPase and its regulators also play an essential transport independent role in nuclear envelope re-assembly after mitosis in animal cells and in the maintenance of nuclear envelope integrity at mitosis in S. pombe. Several experimental strategies and reagents for studying nuclear size, nuclear shape, the localization of nuclear pores, and the integrity of the nuclear envelope in living fission yeast cells are described.


Asunto(s)
Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Schizosaccharomyces/metabolismo , Transporte Activo de Núcleo Celular/fisiología
20.
J Cell Sci ; 115(Pt 2): 421-31, 2002 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11839792

RESUMEN

The Ran GTPase is an essential protein that has multiple functions in eukaryotic cells. Fission yeast cells in which Ran is misregulated arrest after mitosis with condensed, unreplicated chromosomes and abnormal nuclear envelopes. The fission yeast sns mutants arrest with a similar cell cycle block and interact genetically with the Ran system. sns-A10, sns-B2 and sns-B9 have mutations in the fission yeast homologues of S. cerevisiae Sar1p, Sec31p and Sec53p, respectively, which are required for the early steps of the protein secretory pathway. The three sns mutants accumulate a normally secreted protein in the endoplasmic reticulum (ER), have an increased amount of ER membrane, and the ER/nuclear envelope lumen is dilated. Neither a post-ER block in the secretory pathway, nor ER proliferation caused by overexpression of an integral ER membrane protein, results in a cell cycle-specific defect. Therefore, the arrest seen in sns-A10, sns-B2 and sns-B9 is most likely due to nuclear envelope defects that render the cells unable to re-establish the interphase organization of the nucleus after mitosis. As a consequence, these mutants are unable to decondense their chromosomes or to initiate of the next round of DNA replication.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Ciclo Celular/fisiología , Retículo Endoplásmico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Membrana Nuclear/genética , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Datos de Secuencia Molecular , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Mutación/genética , Membrana Nuclear/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosfotransferasas (Fosfomutasas)/genética , Fosfotransferasas (Fosfomutasas)/metabolismo , Schizosaccharomyces/ultraestructura , Homología de Secuencia de Aminoácido , Proteínas de Transporte Vesicular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA