Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Emerg Med ; 66: 118-123, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739786

RESUMEN

OBJECTIVE: Patient portal (PP) use has rapidly increased in recent years. However, the PP use status among houseless patients is largely unknown. We aim to determine 1) the PP use status among Emergency Department (ED) patients experiencing houselessness, and 2) whether PP use is linked to the increase in patient clinic visits. METHODS: This is a single-center retrospective observational study. From March 1, 2019, to February 28, 2021, houseless patients who presented at ED were included. Their PP use status, including passive PP use (log-on only PP) and effective PP use (use PP of functions) was compared between houseless and non-houseless patients. The number of clinic visits was also compared between these two groups. Lastly, a multivariate logistic regression was analyzed to determine the association between houseless status and PP use. RESULTS: We included a total of 236,684 patients, 13% of whom (30,956) were houseless at time of their encounter. Fewer houseless patients had effective PP use in comparison to non-houseless patients (7.3% versus 11.6%, p < 0.001). In addition, a higher number of clinic visits were found among houseless patients who had effective PP use than those without (18 versus 3, p < 0.001). The adjusted odds ratio of houseless status associated with PP use was 0.48 (95% CI 0.46-0.49, p < 0.001). CONCLUSIONS: Houselessness is a potential risk factor preventing patient portal use. In addition, using patient portals could potentially increase clinic visits among the houseless patient population.


Asunto(s)
Portales del Paciente , Humanos , Estudios Retrospectivos , Pacientes , Atención Ambulatoria , Servicio de Urgencia en Hospital
2.
Metabolomics ; 17(5): 41, 2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33866431

RESUMEN

INTRODUCTION: Horses with asthma or osteoarthritis frequently receive ω-3 fatty acid supplements. Docosahexaenoic (DHA; 22:6) and eicosapentaenoic (EPA; 20:5) acids are essential ω-3 fatty acid precursors of anti-inflammatory mediators and components of structural glycerophospholipids (GPL) that act as reservoirs of these fatty acids. Analysis of the incorporation of dietary DHA + EPA into GPL pools in different body compartments has not been undertaken in horses. OBJECTIVES: We undertook a detailed study of dietary supplementation with DHA + EPA in horses and monitored incorporation into DHA- and EPA-containing glycerophosphocholines (GPC) 38:5, 38:6, 40:5, and 40:6 in plasma, synovial fluid (SF), and surfactant. METHODS: Horses (n = 20) were randomly assigned to the supplement or control group and evaluated on days 0, 30, 60, and 90. GPC in plasma, SF, and surfactant were measured by high-resolution mass spectrometry with less than 3 ppm mass error. Validation of DHA and EPA incorporation into these GPC was conducted utilizing MS2 of the [M + Cl]- adducts of GPC. RESULTS: Dietary supplementation resulted in augmented levels of GPC 38:5, 38:6, 40:5, and 40:6 in all compartments. Maximum incorporation into GPCs was delayed until 60 days. Significant increases in the levels of GPC 38:5, 40:5, and 40:6, containing docosapentaenoic acid (DPA; 22:5), also was noted. CONCLUSIONS: DHA and EPA supplementation results in augmented storage pools of ω-3 essential fatty acids in SF and surfactant GPC. This has the potential to improve the ability of anti-inflammatory mechanisms to resolve inflammatory pathways in these critical compartments involved in arthritis and asthma.


Asunto(s)
Líquido Sinovial , Animales , Asma , Suplementos Dietéticos , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Ácidos Grasos Omega-3 , Caballos , Lipoproteínas , Fosforilación , Fosforilcolina , Tensoactivos
3.
Life (Basel) ; 11(5)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924945

RESUMEN

Ceramides have been implicated in a number of disease processes. However, current means of evaluation with flow infusion analysis (FIA) have been limited primarily due to poor sensitivity within our high-resolution mass spectrometry lipidomics analytical platform. To circumvent this deficiency, we investigated the potential of chloride adducts as an alternative method to improve sensitivity with electrospray ionization. Chloride adducts of ceramides and ceramide subfamilies provided 2- to 50-fold increases in sensitivity both with analytical standards and biological samples. Chloride adducts of a number of other lipids with reactive hydroxy groups were also enhanced. For example, monogalactosyl diacylglycerols (MGDGs), extracted from frontal lobe cortical gray and subcortical white matter of cognitively intact subjects, were not detected as ammonium adducts but were readily detected as chloride adducts. Hydroxy lipids demonstrate a high level of specificity in that phosphoglycerols and phosphoinositols do not form chloride adducts. In the case of choline glycerophospholipids, the fatty acid substituents of these lipids could be monitored by MS2 of the chloride adducts. Monitoring the chloride adducts of a number of key lipids offers enhanced sensitivity and specificity with FIA. In the case of glycerophosphocholines, the chloride adducts also allow determination of fatty acid substituents. The chloride adducts of lipids possessing electrophilic hydrogens of hydroxyl groups provide significant increases in sensitivity. In the case of glycerophosphocholines, chloride attachment to the quaternary ammonium group generates a dominant anion, which provides the identities of the fatty acid substituents under MS2 conditions.

4.
Poult Sci ; 100(2): 887-899, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33518142

RESUMEN

While previous studies have characterized the fatty acids and global lipid families of the chicken egg yolk, there have been no publications characterizing the individual lipids in these lipid families. Such an in-depth characterization of egg yolk lipids is essential to define the potential benefits of egg yolk consumption for the supply of structural and anti-inflammatory lipids. Historically, the major focus has been on the cholesterol content of eggs and the potential negative health benefits of this lipid, while ignoring the essential roles of cholesterol in membranes and as a precursor to other essential sterols. A detailed analysis of egg yolk lipids, using high-resolution mass spectrometric analyses and tandem mass spectrometry to characterize the fatty acid substituents of complex structural lipids, was used to generate the first in-depth characterization of individual lipids within lipid families. Egg yolks were isolated from commercial eggs (Full Circle Market) and lipids extracted with methyl-t-butylether before analyses via high-resolution mass spectrometry. This analytical platform demonstrates that chicken egg yolks provide a rich nutritional source of complex structural lipids required for lipid homeostasis. These include dominant glycerophosphocholines (GPC) (34:2 and 36:2), plasmalogen GPC (34:1, 36:1), glycerophosphoethanolamines (GPE) 38:4 and 36:2), plasmalogen GPE (36:2 and 34:1), glycerophosphoserines (36:2 and 38:4), glycerophosphoinositols (38:4), glycerophosphoglycerols (36:2), N-acylphosphatidylethanolamines (NAPE) (56:6), plasmalogen NAPE (54:4 and 56:6), sphingomyelins (16:0), ceramides (22:0 and 24:0), cyclic phosphatidic acids (16:0 and 18:0), monoacylglycerols (18:1 and 18:2), diacylglycerols (36:3 and 36:2), and triacylglycerols (52:3). Our data indicate that the egg yolk is a rich source of structural and energy-rich lipids. In addition, the structural lipids possess ω-3 and ω-6 fatty acids that are essential precursors of endogenous anti-inflammatory lipid mediators. These data indicate that eggs are a valuable nutritional addition to the diets of individuals that do not have cholesterol issues.


Asunto(s)
Pollos , Yema de Huevo , Lípidos/análisis , Animales , Yema de Huevo/química , Ácidos Grasos/análisis , Lipidómica , Espectrometría de Masas/veterinaria , Valor Nutritivo , Ácidos Fosfatidicos/análisis , Ácidos Fosfatidicos/química , Fosfatidilcolinas/análisis , Fosfatidiletanolaminas/análisis , Esfingolípidos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA