Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(15): e107134, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34180064

RESUMEN

Long non-coding RNAs (lncRNAs) are emerging as key regulators of endothelial cell function. Here, we investigated the role of a novel vascular endothelial-associated lncRNA (VEAL2) in regulating endothelial permeability. Precise editing of veal2 loci in zebrafish (veal2gib005Δ8/+ ) induced cranial hemorrhage. In vitro and in vivo studies revealed that veal2 competes with diacylglycerol for interaction with protein kinase C beta-b (Prkcbb) and regulates its kinase activity. Using PRKCB2 as bait, we identified functional ortholog of veal2 in humans from HUVECs and named it as VEAL2. Overexpression and knockdown of VEAL2 affected tubulogenesis and permeability in HUVECs. VEAL2 was differentially expressed in choroid tissue in eye and blood from patients with diabetic retinopathy, a disease where PRKCB2 is known to be hyperactivated. Further, VEAL2 could rescue the effects of PRKCB2-mediated turnover of endothelial junctional proteins thus reducing hyperpermeability in hyperglycemic HUVEC model of diabetic retinopathy. Based on evidence from zebrafish and hyperglycemic HUVEC models and diabetic retinopathy patients, we report a hitherto unknown VEAL2 lncRNA-mediated regulation of PRKCB2, for modulating junctional dynamics and maintenance of endothelial permeability.


Asunto(s)
Retinopatía Diabética/genética , Proteína Quinasa C beta/genética , ARN Largo no Codificante/genética , Pez Cebra/genética , Anciano , Anciano de 80 o más Años , Animales , Animales Modificados Genéticamente , Estudios de Casos y Controles , Retinopatía Diabética/fisiopatología , Embrión no Mamífero , Endotelio Vascular , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Persona de Mediana Edad , Permeabilidad , Proteína Quinasa C beta/metabolismo , ARN Largo no Codificante/sangre , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Neurogenetics ; 25(1): 13-25, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37917284

RESUMEN

An intronic bi-allelic pentanucleotide repeat expansion mutation, (AAGGG)400-2000, at AAAAG repeat locus in RFC1 gene, is known as underlying genetic cause in cases with cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) and late-onset sporadic ataxia. Biallelic positive cases carry a common recessive risk haplotype, "AAGA," spanning RFC1 gene. In this study, our aim is to find prevalence of bi-allelic (AAGGG)exp in Indian ataxia and other neurological disorders and investigate the complexity of RFC1 repeat locus and its potential association with neurodegenerative diseases in Indian population-based cohorts. We carried out repeat number and repeat type estimation using flanking PCR and repeat primed PCR (AAAAG/AAAGG/AAGGG) in four Indian disease cohorts and healthy controls. Haplotype assessment of suspected cases was done by genotyping and confirmed by Sanger sequencing. Blood samples and consent of all the cases and detailed clinical details of positive cases were collected in collaboration with A.I.I.M.S. Furthermore, comprehension of RFC1 repeat locus and risk haplotype analysis in Indian background was performed on the NGS data of Indian healthy controls by ExpansionHunter, ExpansionHunter Denovo, and PHASE analysis, respectively. Genetic screening of RFC1-TNR locus in 1998 uncharacterized cases (SCA12: 87; uncharacterized ataxia: 1818, CMT: 93) and 564 heterogenous controls showed that the frequency of subjects with bi-allelic (AAGGG)exp are 1.15%, < 0.05%, 2.15%, and 0% respectively. Two RFC1 positive sporadic late-onset ataxia cases, one bi-allelic (AAGGG)exp and another, (AAAGG)~700/(AAGGG)exp, had recessive risk haplotype and CANVAS symptoms. Long normal alleles, 15-27, are significantly rare in ataxia cohort. In IndiGen control population (IndiGen; N = 1029), long normal repeat range, 15-27, is significantly associated with A3G3 and some rare repeat motifs, AGAGG, AACGG, AAGAG, and AAGGC. Risk-associated "AAGA" haplotype of the original pathogenic expansion of A2G3 was found associated with the A3G3 representing alleles in background population. Apart from bi-allelic (AAGGG)exp, we report cases with a new pathogenic expansion of (AAAGG)exp/(AAGGG)exp in RFC1 and recessive risk haplotype. We found different repeat motifs at RFC1 TNR locus, like AAAAG, AAAGG, AAAGGG, AAAAGG, AAGAG, AACGG, AAGGC, AGAGG, and AAGGG, in Indian background population except ACAGG and (AAAGG)n/(AAGGG)n. Our findings will help in further understanding the role of long normal repeat size and different repeat motifs, specifically AAAGG, AAAGGG, and other rare repeat motifs, at the RFC1 locus.


Asunto(s)
Ataxia Cerebelosa , Enfermedades del Sistema Nervioso Periférico , Enfermedades Vestibulares , Humanos , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/diagnóstico , Ataxia
3.
J Hum Genet ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890497

RESUMEN

Cardiac channelopathies are a group of heritable disorders that affect the heart's electrical activity due to genetic variations present in genes coding for ion channels. With the advent of new sequencing technologies, molecular diagnosis of these disorders in patients has paved the way for early identification, therapeutic management and family screening. The objective of this retrospective study was to understand the efficacy of whole-genome sequencing in diagnosing patients with suspected cardiac channelopathies who were reported negative after whole exome sequencing and analysis. We employed a 3-tier analysis approach to identify nonsynonymous variations and loss-of-function variations missed by exome sequencing, and structural variations that are better resolved only by sequencing whole genomes. By performing whole genome sequencing and analyzing 25 exome-negative cardiac channelopathy patients, we identified 3 pathogenic variations. These include a heterozygous likely pathogenic nonsynonymous variation, CACNA1C:NM_000719:exon19:c.C2570G:p. P857R, which causes autosomal dominant long QT syndrome in the absence of Timothy syndrome, a heterozygous loss-of-function variation CASQ2:NM_001232.4:c.420+2T>C classified as pathogenic, and a 9.2 kb structural variation that spans exon 2 of the KCNQ1 gene, which is likely to cause Jervell-Lange-Nielssen syndrome. In addition, we also identified a loss-of-function variation and 16 structural variations of unknown significance (VUS). Further studies are required to elucidate the role of these identified VUS in gene regulation and decipher the underlying genetic and molecular mechanisms of these disorders. Our present study serves as a pilot for understanding the utility of WGS over clinical exomes in diagnosing cardiac channelopathy disorders.

4.
Transfus Apher Sci ; 63(2): 103872, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38272782

RESUMEN

The DEL phenotype represents an intriguing and challenging aspect of blood group serology. This condition is characterized by an extremely weak expression of the D antigen on red blood cells, to the extent that it often eludes detection through routine serological methods. Identifying the DEL phenotype necessitates more specialized techniques, such as adsorption and elution tests, to reveal the presence of the D antigen. This distinctive phenotype underscores the complexity and subtlety of blood group genetics and highlights the importance of using advanced methods to accurately classify individuals with this condition, as their ability to form anti-D antibodies can have clinical implications during transfusion and pregnancy scenarios. There is a paucity of data for the DEL phenotype in the Indian population, and the molecular basis has not been elucidated yet. Our investigation delves into the genetic underpinnings of two distinct DEL phenotype cases that pose challenges for resolution through conventional serological techniques. We employ next-generation amplicon sequencing to unravel the intricate genetic landscape underlying these cases. In the D-negative donor, the DEL phenotype was first identified serologically, which was subsequently confirmed by molecular analysis. In the second case, it was associated with an anti-D antibody in a D-positive patient. Initial data analysis unveiled a substantial reduction in coverage across the exonic segments of the RHD gene in both samples, suggesting the potential presence of RHD exon deletions. On both occasions, we identified a homozygous intronic RHD polymorphism that is well established to be linked to the RHD* 01EL.32/RHD*DEL32 variant.


Asunto(s)
Transfusión Sanguínea , Sistema del Grupo Sanguíneo Rh-Hr , Femenino , Embarazo , Humanos , Fenotipo , Sistema del Grupo Sanguíneo Rh-Hr/genética , Exones , Eritrocitos , Secuenciación de Nucleótidos de Alto Rendimiento , Alelos , Genotipo , Donantes de Sangre
5.
Nucleic Acids Res ; 50(D1): D771-D776, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34643704

RESUMEN

Ever since the breakout of COVID-19 disease, ceaseless genomic research to inspect the epidemiology and evolution of the pathogen has been undertaken globally. Large scale viral genome sequencing and analysis have uncovered the functional impact of numerous genetic variants in disease pathogenesis and transmission. Emerging evidence of mutations in spike protein domains escaping antibody neutralization is reported. We have built a database with precise collation of manually curated variants in SARS-CoV-2 from literature with potential escape mechanisms from a range of neutralizing antibodies. This comprehensive repository encompasses a total of 5258 variants accounting for 2068 unique variants tested against 230 antibodies, patient convalescent plasma and vaccine breakthrough events. This resource enables the user to gain access to an extensive annotation of SARS-CoV-2 escape variants which would contribute to exploring and understanding the underlying mechanisms of immune response against the pathogen. The resource is available at http://clingen.igib.res.in/esc/.


Asunto(s)
COVID-19/terapia , Bases de Datos Factuales , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/virología , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Variación Genética , Humanos , Evasión Inmune , Inmunización Pasiva , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Interfaz Usuario-Computador , Sueroterapia para COVID-19
6.
J Hum Genet ; 68(6): 409-417, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36813834

RESUMEN

Structural variants contribute to genetic variability in human genomes and they can be presented in population-specific patterns. We aimed to understand the landscape of structural variants in the genomes of healthy Indian individuals and explore their potential implications in genetic disease conditions. For the identification of structural variants, a whole genome sequencing dataset of 1029 self-declared healthy Indian individuals from the IndiGen project was analysed. Further, these variants were evaluated for potential pathogenicity and their associations with genetic diseases. We also compared our identified variations with the existing global datasets. We generated a compendium of total 38,560 high-confident structural variants, comprising 28,393 deletions, 5030 duplications, 5038 insertions, and 99 inversions. Particularly, we identified around 55% of all these variants were found to be unique to the studied population. Further analysis revealed 134 deletions with predicted pathogenic/likely pathogenic effects and their affected genes were majorly enriched for neurological disease conditions, such as intellectual disability and neurodegenerative diseases. The IndiGenomes dataset helped us to understand the unique spectrum of structural variants in the Indian population. More than half of identified variants were not present in the publicly available global dataset on structural variants. Clinically important deletions identified in IndiGenomes might aid in improving the diagnosis of unsolved genetic diseases, particularly in neurological conditions. Along with basal allele frequency data and clinically important deletions, IndiGenomes data might serve as a baseline resource for future studies on genomic structural variant analysis in the Indian population.


Asunto(s)
Pueblo Asiatico , Genoma Humano , Humanos , Frecuencia de los Genes , Secuenciación Completa del Genoma , Genoma Humano/genética
7.
J Nutr ; 153(12): 3382-3396, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37660953

RESUMEN

BACKGROUND: Maternal vitamin B12 deficiency plays a vital role in fetal programming, as corroborated by previous studies on murine models and longitudinal human cohorts. OBJECTIVES: This study assessed the effects of diet-induced maternal vitamin B12 deficiency on F1 offspring in terms of cardiometabolic health and normalization of these effects by maternal-periconceptional vitamin B12 supplementation. METHODS: A diet-induced maternal vitamin B12 deficient Wistar rat model was generated in which female rats were either fed a control AIN-76A diet (with 0.01 g/kg vitamin B12) or the same diet with vitamin B12 removed. Females from the vitamin B12-deficient group were mated with males on the control diet. A subset of vitamin B12-deficient females was repleted with vitamin B12 on day 1 of conception. The offspring in the F1 generation were assessed for changes in body composition, plasma biochemistry, and molecular changes in the liver. A multiomics approach was used to obtain a mechanistic insight into the changes in the offspring liver. RESULTS: We showed that a 36% reduction in plasma vitamin B12 levels during pregnancy in F0 females can lead to continued vitamin B12 deficiency (60%-70% compared with control) in the F1 offspring and program them for cardiometabolic adversities. These adversities, such as high triglycerides and low high-density lipoprotein cholesterol, were seen only among F1 males but not females. DNA methylome analysis of the liver of F1 3-mo-old offspring highlights sexual dimorphism in the alteration of methylation status of genes critical to signaling processes. Proteomics and targeted metabolomics analysis confirm that sex-specific alterations occur through modulations in PPAR signaling and steroid hormone biosynthesis pathway. Repletion of deficient mothers with vitamin B12 at conception normalizes most of the molecular and biochemical changes. CONCLUSIONS: Maternal vitamin B12 deficiency has a programming effect on the next generation and increases the risk for cardiometabolic syndrome in a sex-specific manner. Normalization of the molecular risk markers on vitamin B12 supplementation indicates a causal role.


Asunto(s)
Enfermedades Cardiovasculares , Deficiencia de Vitamina B 12 , Embarazo , Masculino , Humanos , Ratas , Animales , Femenino , Ratones , Ratas Wistar , Deficiencia de Vitamina B 12/metabolismo , Vitamina B 12 , Reproducción , Enfermedades Cardiovasculares/etiología
8.
Hum Genomics ; 16(1): 30, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35932045

RESUMEN

BACKGROUND: The prevalence and genetic spectrum of cardiac channelopathies exhibit population-specific differences. We aimed to understand the spectrum of cardiac channelopathy-associated variations in India, which is characterised by a genetically diverse population and is largely understudied in the context of these disorders. RESULTS: We utilised the IndiGenomes dataset comprising 1029 whole genomes from self-declared healthy individuals as a template to filter variants in 36 genes known to cause cardiac channelopathies. Our analysis revealed 186,782 variants, of which we filtered 470 variants that were identified as possibly pathogenic (440 nonsynonymous, 30 high-confidence predicted loss of function ). About 26% (124 out of 470) of these variants were unique to the Indian population as they were not reported in the global population datasets and published literature. Classification of 470 variants by ACMG/AMP guidelines unveiled 13 pathogenic/likely pathogenic (P/LP) variants mapping to 19 out of the 1029 individuals. Further query of 53 probands in an independent cohort of cardiac channelopathy, using exome sequencing, revealed the presence of 3 out of the 13 P/LP variants. The identification of p.G179Sfs*62, p.R823W and c.420 + 2 T > C variants in KCNQ1, KCNH2 and CASQ2 genes, respectively, validate the significance of the P/LP variants in the context of clinical applicability as well as for large-scale population analysis. CONCLUSION: A compendium of ACMG/AMP classified cardiac channelopathy variants in 1029 self-declared healthy Indian population was created. A conservative genotypic prevalence was estimated to be 0.9-1.8% which poses a huge public health burden for a country with large population size like India. In the majority of cases, these disorders are manageable and the risk of sudden cardiac death can be alleviated by appropriate lifestyle modifications as well as treatment regimens/clinical interventions. Clinical utility of the obtained variants was demonstrated using a cardiac channelopathy patient cohort. Our study emphasises the need for large-scale population screening to identify at-risk individuals and take preventive measures. However, we suggest cautious clinical interpretation to be exercised by taking other cardiac channelopathy risk factors into account.


Asunto(s)
Canalopatías , Humanos , Canalopatías/epidemiología , Canalopatías/genética , Muerte Súbita Cardíaca/epidemiología , Muerte Súbita Cardíaca/patología , Secuenciación del Exoma , India/epidemiología
9.
Arch Virol ; 168(3): 81, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36740645

RESUMEN

Although previously confined to regions within Africa, lumpy skin disease virus (LSDV) infections have caused significantly large outbreaks in several regions of the world in recent years. In 2019, an outbreak of the disease was reported in India with low rates of morbidity and no reported mortality. However, in 2022, an ongoing outbreak of LSDV spanning over seven states in India resulted in the loss of over 80,000 cattle over a period of three months. Here, we report complete genome sequences of six isolates of LSDV collected from affected cattle during an ongoing outbreak of the disease in Rajasthan, India. Analysis of these sequences showed that the genome isolates from the 2022 outbreak have a large number of genetic variations compared to the reference strain and that they form a distinct genetic lineage. This report thus highlights the importance of genome sequencing and surveillance of transboundary infectious agents to track the prevalence and emergence of variants.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Animales , Bovinos , Virus de la Dermatosis Nodular Contagiosa/genética , Dermatosis Nodular Contagiosa/epidemiología , India/epidemiología , Filogenia , Brotes de Enfermedades/veterinaria
10.
Int J Immunogenet ; 50(3): 134-143, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37160415

RESUMEN

Genetic variants in human platelet antigens (HPAs) considered allo- or auto antigens are associated with various disorders, including neonatal alloimmune thrombocytopenia, platelet transfusion refractoriness and post-transfusion purpura. Although global differences in genotype frequencies were observed, the distributions of HPA variants in the Indian population are largely unknown. This study aims to explore the landscape of HPA variants in India to provide a basis for risk assessment and management of related complications. Population-specific frequencies of genetic variants associated with the 35 classes of HPAs (HPA-1 to HPA-35) were estimated by systematically analysing genomic variations of 1029 healthy Indian individuals as well as from global population genome datasets. Allele frequencies of the most clinically relevant HPA systems in the Indian population were found as follows, HPA-1a - 0.884, HPA-1b - 0.117, HPA-2a - 0.941, HPA-2b - 0.059, HPA-3a - 0.653, HPA-3b - 0.347, HPA-4a - 0.999, HPA-4b - 0.0010, HPA-5a - 0.923, HPA-5b - 0.077, HPA-6a - 0.998, HPA-6b - 0.002, HPA-15a - 0.582 and HPA-15b - 0.418. This study provides the first comprehensive analysis of HPA allele and genotype frequencies using large scale representative whole genome sequencing data of the Indian population.


Asunto(s)
Antígenos de Plaqueta Humana , Humanos , Recién Nacido , Alelos , Antígenos de Plaqueta Humana/genética , Pueblo Asiatico/genética , Frecuencia de los Genes , Genotipo , India
11.
Nucleic Acids Res ; 49(D1): D1225-D1232, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33095885

RESUMEN

With the advent of next-generation sequencing, large-scale initiatives for mining whole genomes and exomes have been employed to better understand global or population-level genetic architecture. India encompasses more than 17% of the world population with extensive genetic diversity, but is under-represented in the global sequencing datasets. This gave us the impetus to perform and analyze the whole genome sequencing of 1029 healthy Indian individuals under the pilot phase of the 'IndiGen' program. We generated a compendium of 55,898,122 single allelic genetic variants from geographically distinct Indian genomes and calculated the allele frequency, allele count, allele number, along with the number of heterozygous or homozygous individuals. In the present study, these variants were systematically annotated using publicly available population databases and can be accessed through a browsable online database named as 'IndiGenomes' http://clingen.igib.res.in/indigen/. The IndiGenomes database will help clinicians and researchers in exploring the genetic component underlying medical conditions. Till date, this is the most comprehensive genetic variant resource for the Indian population and is made freely available for academic utility. The resource has also been accessed extensively by the worldwide community since it's launch.


Asunto(s)
Bases de Datos Genéticas , Variación Genética , Genoma Humano , Proyecto Genoma Humano , Programas Informáticos , Adulto , Exoma , Femenino , Genética de Población/estadística & datos numéricos , Humanos , India , Internet , Masculino , Anotación de Secuencia Molecular , Secuenciación Completa del Genoma
12.
Pharmacogenomics J ; 22(2): 100-108, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34824386

RESUMEN

Indigenous Australians face a disproportionately severe burden of chronic disease relative to other Australians, with elevated rates of morbidity and mortality. While genomics technologies are slowly gaining momentum in personalised treatments for many, a lack of pharmacogenomic research in Indigenous peoples could delay adoption. Appropriately implementing pharmacogenomics in clinical care necessitates an understanding of the frequencies of pharmacologically relevant genetic variants within Indigenous populations. We analysed whole-genome sequence data from 187 individuals from the Tiwi Islands and characterised the pharmacogenomic landscape of this population. Specifically, we compared variant profiles and allelic distributions of previously described pharmacologically significant genes and variants with other population groups. We identified 22 translationally relevant pharmacogenomic variants and 18 clinically actionable guidelines with implications for drug dosing and treatment of conditions including heart disease, diabetes and cancer. We specifically observed increased poor and intermediate metabolizer phenotypes in the CYP2C9 (PM:19%, IM:44%) and CYP2C19 (PM:18%, IM:44%) genes.


Asunto(s)
Pueblos Indígenas , Pruebas de Farmacogenómica , Australia , Citocromo P-450 CYP2C9/genética , Humanos , Variantes Farmacogenómicas
13.
J Med Virol ; 94(4): 1696-1700, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34786733

RESUMEN

Emerging reports of SARS-CoV-2 breakthrough infections entail methodical genomic surveillance for determining the efficacy of vaccines. This study elaborates genomic analysis of isolates from breakthrough infections following vaccination with AZD1222/Covishield and BBV152/Covaxin. Variants of concern B.1.617.2 and B.1.1.7 responsible for cases surge in April-May 2021 in Delhi, were the predominant lineages among breakthrough infections.


Asunto(s)
COVID-19/virología , SARS-CoV-2/genética , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19/administración & dosificación , Femenino , Genoma Viral/genética , Genómica , Humanos , India/epidemiología , Masculino , Persona de Mediana Edad , Filogenia , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Vacunación , Vacunas de Productos Inactivados/administración & dosificación , Adulto Joven
14.
Int J Immunogenet ; 49(5): 345-352, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36029282

RESUMEN

Human neutrophil antigens possess significant clinical implications especially in the fields of transfusion and transplantation medicine. Efforts to estimate the prevalence of genetic variations underpinning the antigenic expression are emerging. However, there lacks a precise capture of the global frequency profiles. Our article emphasizes the potential utility of maintaining an organized online repository of evidence on neutrophil antigen-associated genetic variants from published literature and reports. This, in our opinion, is an emerging area and would significantly benefit from the awareness and understanding of population-level diversities.


Asunto(s)
Antígenos HLA , Neutrófilos , Frecuencia de los Genes , Antígenos HLA/genética , Humanos , Inmunogenética , Epidemiología Molecular
15.
Transfus Med ; 32(3): 229-236, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34897852

RESUMEN

BACKGROUND: Blood groups form the basis of effective and safe blood transfusion. There are about 43 well-recognised human blood group systems presently known. Blood groups are molecularly determined by the presence of specific antigens on the red blood cells and are genetically determined and inherited following Mendelian principles. The lack of a comprehensive, relevant, manually compiled and genome-ready dataset of red cell antigens limited the widespread application of genomic technologies to characterise and interpret the blood group complement of an individual from genomic datasets. MATERIALS AND METHODS: A range of public datasets was used to systematically annotate the variation compendium for its functionality and allele frequencies across global populations. Details on phenotype or relevant clinical importance were collated from reported literature evidence. RESULTS: We have compiled the Blood Group Associated Genomic Variant Resource (BGvar), a manually curated online resource comprising all known human blood group related allelic variants including a total of 1700 International Society of Blood Transfusion approved alleles and 1706 alleles predicted and curated from literature reports. This repository includes 1682 single nucleotide variations (SNVs), 310 Insertions, Deletions (InDels) and Duplications (Copy Number Variations) and about 1360 combination mutations corresponding to 43 human blood group systems and 2 transcription factors. This compendium also encompasses gene fusion and rearrangement events occurring in human blood group genes. CONCLUSION: To the best of our knowledge, BGvar is a comprehensive and a user-friendly resource with most relevant collation of blood group alleles in humans. BGvar is accessible online at URL: http://clingen.igib.res.in/bgvar/.


Asunto(s)
Antígenos de Grupos Sanguíneos , Antígenos de Grupos Sanguíneos/genética , Variaciones en el Número de Copia de ADN , Variación Genética , Genómica , Humanos , Inmunogenética
16.
Genomics ; 113(4): 2483-2494, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34022346

RESUMEN

Mealybugs are aggressive pests with world-wide distribution and are suitable for the study of different phenomena like genomic imprinting and epigenetics. Genomic approaches facilitate these studies in absence of robust genetics in this system. We sequenced, de novo assembled, annotated Maconellicoccus hirsutus genome. We carried out comparative genomics it with four mealybug and eight other insect species, to identify expanded, specific and contracted gene classes that relate to pesticide and desiccation resistance. We identified horizontally transferred genes adding to the mutualism between the mealybug and its endosymbionts. Male and female transcriptome analysis indicates differential expression of metabolic pathway genes correlating with their physiology and the genes for sexual dimorphism. The significantly lower expression of endosymbiont genes in males relates to the depletion of endosymbionts in males during development.


Asunto(s)
Hemípteros , Animales , Femenino , Perfilación de la Expresión Génica , Genoma , Hemípteros/genética , Masculino , Fenotipo , Simbiosis , Transcriptoma
17.
Am J Med Genet A ; 185(1): 278-281, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33111394

RESUMEN

A 9-year-old boy presented for evaluation of variegated skin pigmentation. Palms and soles revealed honeycombed hyperpigmented hyperkeratosis. Irregular, firm, skin coloured nodules suggestive of cutaneous calcification were present on both elbows. Total leucocyte count and absolute neutrophil count were 3720/mm3 and 420/mm3 respectively. The neutropenia was not cyclical. Systematic analysis of the whole exome data revealed a homozygous mutation in USB1 gene; chr16:g.58043892TA>-[1/1]. A final diagnosis of poikiloderma with neutropenia- Clericuzio type (PNC) was made. Naegeli Franceschetti Jadassohn, dermatopathia pigmentosa reticularis, PNC and dyskeratosis congenita, all can present with overlapping cutaneous manifestations. Subtle clinical details like thickened nails, hyperextensible joints, calcinosis cutis, characteristic facies and a preceding erythematopapular rash strongly favor the diagnosis of PNC. The index case highlights two novel findings: obliterated dermatoglyphics and mucin deposition (features not described hitherto in PNC).


Asunto(s)
Disqueratosis Congénita/diagnóstico , Mucinas/genética , Neutropenia/diagnóstico , Hidrolasas Diéster Fosfóricas/genética , Anomalías Cutáneas/diagnóstico , Adolescente , Diagnóstico Diferencial , Disqueratosis Congénita/diagnóstico por imagen , Disqueratosis Congénita/genética , Disqueratosis Congénita/patología , Humanos , Hiperpigmentación/diagnóstico , Hiperpigmentación/genética , Hiperpigmentación/patología , Masculino , Mucinas/metabolismo , Mutación , Neutropenia/diagnóstico por imagen , Neutropenia/genética , Neutropenia/patología , Linaje , Anomalías Cutáneas/diagnóstico por imagen , Anomalías Cutáneas/genética , Anomalías Cutáneas/patología , Pigmentación de la Piel/genética
18.
J Exp Bot ; 71(17): 5280-5293, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32526034

RESUMEN

Limited information is available on abiotic stress-mediated alterations of chromatin conformation influencing gene expression in plants. In order to characterize the effect of abiotic stresses on changes in chromatin conformation, we employed FAIRE-seq (formaldehyde-assisted isolation of regulatory element sequencing) and DNase-seq to isolate accessible regions of chromatin from Arabidopsis thaliana seedlings exposed to either heat, cold, salt, or drought stress. Approximately 25% of regions in the Arabidopsis genome were captured as open chromatin, the majority of which included promoters and exons. A large proportion of chromatin regions apparently did not change their conformation in response to any of the four stresses. Digital footprints present within these regions had differential enrichment of motifs for binding of 43 different transcription factors. Further, in contrast to drought and salt stress, both high and low temperature treatments resulted in increased accessibility of the chromatin. Also, pseudogenes attained increased chromatin accessibility in response to cold and drought stresses. The highly accessible and inaccessible chromatin regions of seedlings exposed to drought stress correlated with the Ser/Thr protein kinases (MLK1 and MLK2)-mediated reduction and increase in H3 phosphorylation (H3T3Ph), respectively. The presented results provide a deeper understanding of abiotic stress-mediated chromatin modulation in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina , Sequías , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico
19.
Hum Genomics ; 14(1): 52, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554517

RESUMEN

Home to a culturally heterogeneous population, India is also a melting pot of genetic diversity. The population architecture characterized by multiple endogamous groups with specific marriage patterns, including the widely prevalent practice of consanguinity, not only makes the Indian population distinct from rest of the world but also provides a unique advantage and niche to understand genetic diseases. Centuries of genetic isolation of population groups have amplified the founder effects, contributing to high prevalence of recessive alleles, which translates into genetic diseases, including rare genetic diseases in India.Rare genetic diseases are becoming a public health concern in India because a large population size of close to a billion people would essentially translate to a huge disease burden for even the rarest of the rare diseases. Genomics-based approaches have been demonstrated to accelerate the diagnosis of rare genetic diseases and reduce the socio-economic burden. The Genomics for Understanding Rare Diseases: India Alliance Network (GUaRDIAN) stands for providing genomic solutions for rare diseases in India. The consortium aims to establish a unique collaborative framework in health care planning, implementation, and delivery in the specific area of rare genetic diseases. It is a nation-wide collaborative research initiative catering to rare diseases across multiple cohorts, with over 240 clinician/scientist collaborators across 70 major medical/research centers. Within the GUaRDIAN framework, clinicians refer rare disease patients, generate whole genome or exome datasets followed by computational analysis of the data for identifying the causal pathogenic variations. The outcomes of GUaRDIAN are being translated as community services through a suitable platform providing low-cost diagnostic assays in India. In addition to GUaRDIAN, several genomic investigations for diseased and healthy population are being undertaken in the country to solve the rare disease dilemma.In summary, rare diseases contribute to a significant disease burden in India. Genomics-based solutions can enable accelerated diagnosis and management of rare diseases. We discuss how a collaborative research initiative such as GUaRDIAN can provide a nation-wide framework to cater to the rare disease community of India.


Asunto(s)
Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Consanguinidad , Enfermedades Genéticas Congénitas/epidemiología , Variación Genética/genética , Genómica/métodos , Humanos , India/epidemiología , Salud Pública , Enfermedades Raras/epidemiología
20.
Mol Cell Biochem ; 468(1-2): 83-96, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32189172

RESUMEN

Vitamin B12 deficiency is a critical problem worldwide and peri-conceptional deficiency of this vitamin is associated with the risk of complex cardio-metabolic diseases. Nutritional perturbations during these stages of development may lead to changes in the fetal epigenome. Using Wistar rat model system, we have earlier shown that low maternal B12 levels are associated with low birth weight, adiposity, insulin resistance, and increased triglyceride levels in the offspring, which might predispose them to the risk of cardio-metabolic diseases in adulthood. In this study, we have investigated the effects of maternal B12 deficiency on genome-wide DNA methylation profile of the offspring and the effect of rehabilitation of mothers with B12 at conception. We have performed methylated DNA immunoprecipitation sequencing of liver from pups in four groups of Wistar rats: Control (C), B12-restricted (B12R), B12-rehabilitated at conception (B12RC), and B12-rehabilitated at parturition (B12RP). We have analyzed differentially methylated signatures between the three groups as compared to controls. We have identified a total of 214 hypermethylated and 142 hypomethylated regions in the 10 kb upstream region of transcription start site in pups of B12-deficient mothers, which are enriched in genes involved in fatty acid metabolism and mitochondrial transport/metabolism. B12 rehabilitation at conception and parturition is responsible for reversal of methylation status of many of these regions to control levels suggesting a causal association with metabolic phenotypes. Thus, maternal B12 restriction alters DNA methylation of genes involved in important metabolic processes and influences the offspring phenotype, which is reversed by B12 rehabilitation of mothers at conception.


Asunto(s)
Metilación de ADN , Hígado/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Deficiencia de Vitamina B 12 , Vitamina B 12/metabolismo , Animales , Animales Recién Nacidos , Islas de CpG/genética , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoprecipitación , Resistencia a la Insulina/genética , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Obesidad/metabolismo , Fenotipo , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Ratas , Ratas Wistar , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA