Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Proteomics ; 21(1): 42, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38880880

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a clinically and biologically heterogenous disease with currently unpredictable progression and relapse. After the development and success of neurofilament as a cerebrospinal fluid (CSF) biomarker, there is reinvigorated interest in identifying other markers of or contributors to disease. The objective of this study is to probe the predictive potential of a panel of brain-enriched proteins on MS disease progression and subtype. METHODS: This study includes 40 individuals with MS and 14 headache controls. The MS cohort consists of 20 relapsing remitting (RR) and 20 primary progressive (PP) patients. The CSF of all individuals was analyzed for 63 brain enriched proteins using a method of liquid-chromatography tandem mass spectrometry. Wilcoxon rank sum test, Kruskal-Wallis one-way ANOVA, logistic regression, and Pearson correlation were used to refine the list of candidates by comparing relative protein concentrations as well as relation to known imaging and molecular biomarkers. RESULTS: We report 30 proteins with some relevance to disease, clinical subtype, or severity. Strikingly, we observed widespread protein depletion in the disease CSF as compared to control. We identified numerous markers of relapsing disease, including KLK6 (kallikrein 6, OR = 0.367, p < 0.05), which may be driven by active disease as defined by MRI enhancing lesions. Other oligodendrocyte-enriched proteins also appeared at reduced levels in relapsing disease, namely CNDP1 (carnosine dipeptidase 1), LINGO1 (leucine rich repeat and Immunoglobin-like domain-containing protein 1), MAG (myelin associated glycoprotein), and MOG (myelin oligodendrocyte glycoprotein). Finally, we identified three proteins-CNDP1, APLP1 (amyloid beta precursor like protein 1), and OLFM1 (olfactomedin 1)-that were statistically different in relapsing vs. progressive disease raising the potential for use as an early biomarker to discriminate clinical subtype. CONCLUSIONS: We illustrate the utility of targeted mass spectrometry in generating potential targets for future biomarker studies and highlight reductions in brain-enriched proteins as markers of the relapsing remitting disease stage.

2.
Clin Proteomics ; 20(1): 33, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644477

RESUMEN

BACKGROUND: Multiple sclerosis (MS) remains a highly unpredictable disease. Many hope that fluid biomarkers may contribute to better stratification of disease, aiding the personalisation of treatment decisions, ultimately improving patient outcomes. OBJECTIVE: The objective of this study was to evaluate the predictive value of CSF brain-specific proteins from early in the disease course of MS on long term clinical outcomes. METHODS: In this study, 34 MS patients had their CSF collected and stored within 5 years of disease onset and were then followed clinically for at least 15 years. CSF concentrations of 64 brain-specific proteins were analyzed in the 34 patient CSF, as well as 19 age and sex-matched controls, using a targeted liquid-chromatography tandem mass spectrometry approach. RESULTS: We identified six CSF brain-specific proteins that significantly differentiated MS from controls (p < 0.05) and nine proteins that could predict disease course over the next decade. CAMK2A emerged as a biomarker candidate that could discriminate between MS and controls and could predict long-term disease progression. CONCLUSION: Targeted approaches to identify and quantify biomarkers associated with MS in the CSF may inform on long term MS outcomes. CAMK2A may be one of several candidates, warranting further exploration.

3.
J Neurosci ; 41(41): 8644-8667, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34493542

RESUMEN

Western-style diets cause disruptions in myelinating cells and astrocytes within the mouse CNS. Increased CD38 expression is present in the cuprizone and experimental autoimmune encephalomyelitis models of demyelination and CD38 is the main nicotinamide adenine dinucleotide (NAD+)-depleting enzyme in the CNS. Altered NAD+ metabolism is linked to both high fat consumption and multiple sclerosis (MS). Here, we identify increased CD38 expression in the male mouse spinal cord following chronic high fat consumption, after focal toxin [lysolecithin (LL)]-mediated demyelinating injury, and in reactive astrocytes within active MS lesions. We demonstrate that CD38 catalytically inactive mice are substantially protected from high fat-induced NAD+ depletion, oligodendrocyte loss, oxidative damage, and astrogliosis. A CD38 inhibitor, 78c, increased NAD+ and attenuated neuroinflammatory changes induced by saturated fat applied to astrocyte cultures. Conditioned media from saturated fat-exposed astrocytes applied to oligodendrocyte cultures impaired myelin protein production, suggesting astrocyte-driven indirect mechanisms of oligodendrogliopathy. In cerebellar organotypic slice cultures subject to LL-demyelination, saturated fat impaired signs of remyelination effects that were mitigated by concomitant 78c treatment. Significantly, oral 78c increased counts of oligodendrocytes and remyelinated axons after focal LL-induced spinal cord demyelination. Using a RiboTag approach, we identified a unique in vivo brain astrocyte translatome profile induced by 78c-mediated CD38 inhibition in mice, including decreased expression of proinflammatory astrocyte markers and increased growth factors. Our findings suggest that a high-fat diet impairs oligodendrocyte survival and differentiation through astrocyte-linked mechanisms mediated by the NAD+ase CD38 and highlights CD38 inhibitors as potential therapeutic candidates to improve myelin regeneration.SIGNIFICANCE STATEMENT Myelin disturbances and oligodendrocyte loss can leave axons vulnerable, leading to permanent neurologic deficits. The results of this study suggest that metabolic disturbances, triggered by consumption of a diet high in fat, promote oligodendrogliopathy and impair myelin regeneration through astrocyte-linked indirect nicotinamide adenine dinucleotide (NAD+)-dependent mechanisms. We demonstrate that restoring NAD+ levels via genetic inactivation of CD38 can overcome these effects. Moreover, we show that therapeutic inactivation of CD38 can enhance myelin regeneration. Together, these findings point to a new metabolic targeting strategy positioned to improve disease course in multiple sclerosis and other conditions in which the integrity of myelin is a key concern.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Astrocitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Vaina de Mielina/metabolismo , NAD+ Nucleosidasa/fisiología , Regeneración Nerviosa/fisiología , Remielinización/fisiología , ADP-Ribosil Ciclasa 1/antagonistas & inhibidores , ADP-Ribosil Ciclasa 1/genética , Animales , Cerebelo/metabolismo , Dieta Alta en Grasa/efectos adversos , Masculino , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/genética , Técnicas de Cultivo de Órganos
4.
Glia ; 70(3): 430-450, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34626143

RESUMEN

Kallikrein related peptidase 6 (Klk6) is a secreted serine protease highly expressed in oligodendrocytes and implicated in demyelinating conditions. To gain insights into the significance of Klk6 to oligodendrocyte biology, we investigated the impact of global Klk6 gene knockout on CNS developmental myelination using the spinal cord of male and female mice as a model. Results demonstrate that constitutive loss of Klk6 expression accelerates oligodendrocyte differentiation developmentally, including increases in the expression of myelin proteins such as MBP, PLP and CNPase, in the number of CC-1+ mature oligodendrocytes, and myelin thickness by the end of the first postnatal week. Co-ordinate elevations in the pro-myelinating signaling pathways ERK and AKT, expression of fatty acid 2-hydroxylase, and myelin regulatory transcription factor were also observed in the spinal cord of 7d Klk6 knockouts. LC/MS/MS quantification of spinal cord lipids showed sphingosine and sphingomyelins to be elevated in Klk6 knockouts at the peak of myelination. Oligodendrocyte progenitor cells (OPCs)-derived from Klk6 knockouts, or wild type OPCs-treated with a Klk6 inhibitor (DFKZ-251), also showed increased MBP and PLP. Moreover, inhibition of Klk6 in OPC cultures enhanced brain derived neurotrophic factor-driven differentiation. Altogether, these findings suggest that oligodendrocyte-derived Klk6 may operate as an autocrine or paracrine rheostat, or brake, on pro-myelinating signaling serving to regulate myelin homeostasis developmentally and in the adult. These findings document for the first time that inhibition of Klk6 globally, or specifically in oligodendrocyte progenitors, is a strategy to increase early stages of oligodendrocyte differentiation and myelin production in the CNS.


Asunto(s)
Calicreínas/metabolismo , Oligodendroglía , Espectrometría de Masas en Tándem , Animales , Diferenciación Celular/fisiología , Femenino , Calicreínas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo
5.
J Neurosci ; 40(7): 1483-1500, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31911460

RESUMEN

Myelin loss limits neurological recovery and myelin regeneration and is critical for restoration of function. We recently discovered that global knock-out of the thrombin receptor, also known as Protease Activated Receptor 1 (PAR1), accelerates myelin development. Here we demonstrate that knocking out PAR1 also promotes myelin regeneration. Outcomes in two unique models of myelin injury and repair, that is lysolecithin or cuprizone-mediated demyelination, showed that PAR1 knock-out in male mice improves replenishment of myelinating cells and remyelinated nerve fibers and slows early axon damage. Improvements in myelin regeneration in PAR1 knock-out mice occurred in tandem with a skewing of reactive astrocyte signatures toward a prorepair phenotype. In cell culture, the promyelinating effects of PAR1 loss of function are consistent with possible direct effects on the myelinating potential of oligodendrocyte progenitor cells (OPCs), in addition to OPC-indirect effects involving enhanced astrocyte expression of promyelinating factors, such as BDNF. These findings highlight previously unrecognized roles of PAR1 in myelin regeneration, including integrated actions across the oligodendrocyte and astroglial compartments that are at least partially mechanistically linked to the powerful BDNF-TrkB neurotrophic signaling system. Altogether, findings suggest PAR1 may be a therapeutically tractable target for demyelinating disorders of the CNS.SIGNIFICANCE STATEMENT Replacement of oligodendroglia and myelin regeneration holds tremendous potential to improve function across neurological conditions. Here we demonstrate Protease Activated Receptor 1 (PAR1) is an important regulator of the capacity for myelin regeneration across two experimental murine models of myelin injury. PAR1 is a G-protein-coupled receptor densely expressed in the CNS, however there is limited information regarding its physiological roles in health and disease. Using a combination of PAR1 knock-out mice, oligodendrocyte monocultures and oligodendrocyte-astrocyte cocultures, we demonstrate blocking PAR1 improves myelin production by a mechanism related to effects across glial compartments and linked in part to regulatory actions toward growth factors such as BDNF. These findings set the stage for development of new clinically relevant myelin regeneration strategies.


Asunto(s)
Enfermedades Desmielinizantes/fisiopatología , Regeneración Nerviosa/efectos de los fármacos , Receptor PAR-1/antagonistas & inhibidores , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Axones/patología , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/farmacología , Quelantes/toxicidad , Técnicas de Cocultivo , Cobre , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/patología , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Perfilación de la Expresión Génica , Lisofosfatidilcolinas/toxicidad , Masculino , Ratones , Ratones Noqueados , Vaina de Mielina/fisiología , Regeneración Nerviosa/fisiología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/patología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Oligodendroglía/patología , Receptor PAR-1/deficiencia , Receptor PAR-1/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/patología
6.
Glia ; 69(9): 2111-2132, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33887067

RESUMEN

Excessive activation of the thrombin receptor, protease activated receptor 1 (PAR1) is implicated in diverse neuropathologies from neurodegenerative conditions to neurotrauma. PAR1 knockout mice show improved outcomes after experimental spinal cord injury (SCI), however information regarding the underpinning cellular and molecular mechanisms is lacking. Here we demonstrate that genetic blockade of PAR1 in female mice results in improvements in sensorimotor co-ordination after thoracic spinal cord lateral compression injury. We document improved neuron preservation with increases in Synapsin-1 presynaptic proteins and GAP43, a growth cone marker, after a 30 days recovery period. These improvements were coupled to signs of enhanced myelin resiliency and repair, including increases in the number of mature oligodendrocytes, their progenitors and the abundance of myelin basic protein. These significant increases in substrates for neural recovery were accompanied by reduced astrocyte (Serp1) and microglial/monocyte (CD68 and iNOS) pro-inflammatory markers, with coordinate increases in astrocyte (S100A10 and Emp1) and microglial (Arg1) markers reflective of pro-repair activities. Complementary astrocyte-neuron co-culture bioassays suggest astrocytes with PAR1 loss-of-function promote both neuron survival and neurite outgrowth. Additionally, the pro-neurite outgrowth effects of switching off astrocyte PAR1 were blocked by inhibiting TrkB, the high affinity receptor for brain derived neurotrophic factor. Altogether, these studies demonstrate unique modulatory roles for PAR1 in regulating glial-neuron interactions, including the capacity for neurotrophic factor signaling, and underscore its position at neurobiological intersections critical for the response of the CNS to injury and the capacity for regenerative repair and restoration of function.


Asunto(s)
Receptor PAR-1 , Traumatismos de la Médula Espinal , Animales , Astrocitos/metabolismo , Femenino , Ratones , Neuronas/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo
7.
Neurobiol Dis ; 152: 105294, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33549720

RESUMEN

Despite concerted efforts to identify CNS regeneration strategies, an incomplete understanding of how the needed molecular machinery is regulated limits progress. Here we use models of lateral compression and FEJOTA clip contusion-compression spinal cord injury (SCI) to identify the thrombin receptor (Protease Activated Receptor 1 (PAR1)) as an integral facet of this machine with roles in regulating neurite growth through a growth factor- and cholesterol-dependent mechanism. Functional recovery and signs of neural repair, including expression of cholesterol biosynthesis machinery and markers of axonal and synaptic integrity, were all increased after SCI in PAR1 knockout female mice, while PTEN was decreased. Notably, PAR1 differentially regulated HMGCS1, a gene encoding a rate-limiting enzyme in cholesterol production, across the neuronal and astroglial compartments of the intact versus injured spinal cord. Pharmacologic inhibition of cortical neuron PAR1 using vorapaxar in vitro also decreased PTEN and promoted neurite outgrowth in a cholesterol dependent manner, including that driven by suboptimal brain derived neurotrophic factor (BDNF). Pharmacologic inhibition of PAR1 also augmented BDNF-driven HMGCS1 and cholesterol production by murine cortical neurons and by human SH-SY5Y and iPSC-derived neurons. The link between PAR1, cholesterol and BDNF was further highlighted by demonstrating that the deleterious effects of PAR1 over-activation are overcome by supplementing cultures with BDNF, cholesterol or by blocking an inhibitor of adenylate cyclase, Gαi. These findings document PAR1-linked neurotrophic coupling mechanisms that regulate neuronal cholesterol metabolism as an important component of the machinery regulating CNS repair and point to new strategies to enhance neural resiliency after injury.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Colesterol/metabolismo , Regeneración Nerviosa/fisiología , Neuronas/metabolismo , Receptor PAR-1/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proyección Neuronal/fisiología , Recuperación de la Función/fisiología
8.
J Biol Chem ; 294(43): 15759-15767, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31492751

RESUMEN

Vascular endothelial growth factor A (VEGF) signals primarily through its cognate receptor VEGF receptor-2 (VEGFR-2) to control vasculogenesis and angiogenesis, key physiological processes in cardiovascular disease and cancer. In human umbilical vein endothelial cells (HUVECs), knockdown of protein kinase D-1 (PKD1) or PKD2 down-regulates VEGFR-2 expression and inhibits VEGF-induced cell proliferation and migration. However, how PKD regulates VEGF signaling is unclear. Previous bioinformatics analyses have identified binding sites for the transcription factor activating enhancer-binding protein 2 (AP2) in the VEGFR-2 promoter. Using ChIP analyses, here we found that PKD knockdown in HUVECs increases binding of AP2ß to the VEGFR-2 promoter. Luciferase reporter assays with serial deletions of AP2-binding sites within the VEGFR-2 promoter revealed that its transcriptional activity negatively correlates with the number of these sites. Next we demonstrated that AP2ß up-regulation decreases VEGFR-2 expression and that loss of AP2ß enhances VEGFR-2 expression in HUVECs. In vivo experiments confirmed increased VEGFR-2 immunostaining in the spinal cord of AP2ß knockout mouse embryos. Mechanistically, we observed that PKD phosphorylates AP2ß at Ser258 and Ser277 and suppresses its nuclear accumulation. Inhibition of PKD activity with a pan-PKD inhibitor increased AP2ß nuclear localization, and overexpression of both WT and constitutively active PKD1 or PKD2 reduced AP2ß nuclear localization through a Ser258- and Ser277-dependent mechanism. Furthermore, substitution of Ser277 in AP2ß increased its binding to the VEGFR-2 promoter. Our findings uncover evidence of a molecular pathway that regulates VEGFR-2 expression, insights that may shed light on the etiology of diseases associated with aberrant VEGF/VEGFR signaling.


Asunto(s)
Núcleo Celular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteína Quinasa C/metabolismo , Factor de Transcripción AP-2/metabolismo , Transcripción Genética , Regulación hacia Arriba , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Movimiento Celular , Proliferación Celular , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Neovascularización Fisiológica , Regiones Promotoras Genéticas/genética , Unión Proteica , Serina/metabolismo
9.
Neurobiol Dis ; 141: 104934, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32376475

RESUMEN

A diet high in fat and sucrose (HFHS), the so-called Western diet promotes metabolic syndrome, a significant co-morbidity for individuals with spinal cord injury (SCI). Here we demonstrate that the spinal cord of mice consuming HFHS expresses reduced insulin-like growth factor 1 (IGF-1) and its receptor and shows impaired tricarboxylic acid cycle function, reductions in PLP and increases in astrogliosis, all prior to SCI. After SCI, Western diet impaired sensorimotor and bladder recovery, increased microgliosis, exacerbated oligodendrocyte loss and reduced axon sprouting. Direct and indirect neural injury mechanisms are suggested since HFHS culture conditions drove parallel injury responses directly and indirectly after culture with conditioned media from HFHS-treated astrocytes. In each case, injury mechanisms included reductions in IGF-1R, SIRT1 and PGC-1α and were prevented by metformin. Results highlight the potential for a Western diet to evoke signs of neural insulin resistance and injury and metformin as a strategy to improve mechanisms of neural neuroprotection and repair.


Asunto(s)
Astrocitos/metabolismo , Dieta Occidental , Metabolismo Energético , Traumatismos de la Médula Espinal/metabolismo , Animales , Femenino , Homeostasis , Insulina/metabolismo , Masculino , Ratones Endogámicos C57BL , Vaina de Mielina/patología , Traumatismos de la Médula Espinal/patología
11.
Biol Chem ; 399(9): 1041-1052, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-29604205

RESUMEN

Kallikrein-related peptidase 6 (Klk6) is the most abundant serine proteinase in the adult central nervous system (CNS), yet we know little regarding its physiological roles or mechanisms of action. Levels of Klk6 in the extracellular environment are dynamically regulated in CNS injury and disease positioning this secreted enzyme to affect cell behavior by potential receptor dependent and independent mechanisms. Here we show that recombinant Klk6 evokes increases in intracellular Ca2+ in primary astrocyte monolayer cultures through activation of proteinase activated receptor 1 (PAR1). In addition, Klk6 promoted a condensation of astrocyte cortical actin leading to an elongated stellate shape and multicellular aggregation in a manner that was dependent on the presence of either PAR1 or PAR2. Klk6-evoked changes in astrocyte shape were accompanied by translocation of ß-catenin from the plasma membrane to the cytoplasm. These data are exciting because they demonstrate that Klk6 can influence astrocyte plasticity through receptor-dependent mechanisms. Furthermore, this study expands our understanding of the mechanisms by which kallikreins can contribute to neural homeostasis and remodeling and point to both PAR1 and PAR2 as new therapeutic targets to modulate astrocyte form and function.


Asunto(s)
Astrocitos/metabolismo , Calicreínas/metabolismo , Receptores Proteinasa-Activados/metabolismo , Animales , Calcio/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Proteinasa-Activados/deficiencia
12.
Biol Chem ; 399(9): 1023-1039, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-29924723

RESUMEN

We propose that in the microenvironment of inflammatory tissues, including tumours, extracellular proteinases can modulate cell signalling in part by regulating proteinase-activated receptors (PARs). We have been exploring this mechanism in a variety of inflammation and tumour-related settings that include tumour-derived cultured cells from prostate and bladder cancer, as well as immune inflammatory cells that are involved in the pathology of inflammatory diseases including multiple sclerosis. Our work showed that proteinase signalling via the PARs affects prostate and bladder cancer-derived tumour cell behaviour and can regulate calcium signalling in human T-cell and macrophage-related inflammatory cells as well as in murine splenocytes. Further, we found that the tumour-derived prostate cancer cells and immune-related cells (Jurkat, THP1, mouse splenocytes) can produce PAR-regulating proteinases (including kallikreins: kallikrein-related peptidases), that can control tissue function by both a paracrine and autocrine mechanism. We suggest that this PAR-driven signalling process involving secreted microenvironment proteinases can play a key role in cancer and inflammatory diseases including multiple sclerosis.


Asunto(s)
Inflamación/metabolismo , Péptido Hidrolasas/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Proteinasa-Activados/metabolismo , Microambiente Tumoral , Animales , Células Cultivadas , Humanos , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias de la Próstata/patología
13.
Biochim Biophys Acta ; 1862(4): 545-555, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26826016

RESUMEN

Here we show that the interplay between exercise training and dietary fat regulates myelinogenesis in the adult central nervous system. Mice consuming high fat with coordinate voluntary running wheel exercise for 7weeks showed increases in the abundance of the major myelin membrane proteins, proteolipid (PLP) and myelin basic protein (MBP), in the lumbosacral spinal cord. Expression of MBP and PLP RNA, as well that for Myrf1, a transcription factor driving oligodendrocyte differentiation were also differentially increased under each condition. Furthermore, expression of IGF-1 and its receptor IGF-1R, known to promote myelinogenesis, were also increased in the spinal cord in response to high dietary fat or exercise training. Parallel increases in AKT signaling, a pro-myelination signaling intermediate activated by IGF-1, were also observed in the spinal cord of mice consuming high fat alone or in combination with exercise. Despite the pro-myelinogenic effects of high dietary fat in the context of exercise, high fat consumption in the setting of a sedentary lifestyle reduced OPCs and mature oligodendroglia. Whereas 7weeks of exercise training alone did not alter OPC or oligodendrocyte numbers, it did reverse reductions seen with high fat. Evidence is presented suggesting that the interplay between exercise and high dietary fat increase SIRT1, PGC-1α and antioxidant enzymes which may permit oligodendroglia to take advantage of diet and exercise-related increases in mitochondrial activity to yield increases in myelination despite higher levels of reactive oxygen species.


Asunto(s)
Grasas de la Dieta/farmacología , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/metabolismo , Condicionamiento Físico Animal , Transducción de Señal/efectos de los fármacos , Médula Espinal/metabolismo , Animales , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Oligodendroglía/metabolismo , Receptor IGF Tipo 1/metabolismo
14.
Glia ; 65(12): 2070-2086, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28921694

RESUMEN

Oligodendrocytes are essential regulators of axonal energy homeostasis and electrical conduction and emerging target cells for restoration of neurological function. Here we investigate the role of protease activated receptor 2 (PAR2), a unique protease activated G protein-coupled receptor, in myelin development and repair using the spinal cord as a model. Results demonstrate that genetic deletion of PAR2 accelerates myelin production, including higher proteolipid protein (PLP) levels in the spinal cord at birth and higher levels of myelin basic protein and thickened myelin sheaths in adulthood. Enhancements in spinal cord myelin with PAR2 loss-of-function were accompanied by increased numbers of Olig2- and CC1-positive oligodendrocytes, as well as in levels of cyclic adenosine monophosphate (cAMP), and extracellular signal related kinase 1/2 (ERK1/2) signaling. Parallel promyelinating effects were observed after blocking PAR2 expression in purified oligodendrocyte cultures, whereas inhibiting adenylate cyclase reversed these effects. Conversely, PAR2 activation reduced PLP expression and this effect was prevented by brain derived neurotrophic factor (BDNF), a promyelinating growth factor that signals through cAMP. PAR2 knockout mice also showed improved myelin resiliency after traumatic spinal cord injury and an accelerated pattern of myelin regeneration after focal demyelination. These findings suggest that PAR2 is an important controller of myelin production and regeneration, both in the developing and adult spinal cord.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Vaina de Mielina/fisiología , Receptor PAR-2/metabolismo , Traumatismos de la Médula Espinal , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Proteínas Relacionadas con la Autofagia , Factor Neurotrófico Derivado del Encéfalo/farmacología , AMP Cíclico/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Transgénicos , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Proteínas Nogo/genética , Proteínas Nogo/metabolismo , Oligodendroglía/metabolismo , Receptor PAR-2/genética , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Células Madre/efectos de los fármacos , Células Madre/metabolismo
15.
Neurobiol Dis ; 93: 226-42, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27145117

RESUMEN

The deregulation of serine protease activity is a common feature of neurological injury, but little is known regarding their mechanisms of action or whether they can be targeted to facilitate repair. In this study we demonstrate that the thrombin receptor (Protease Activated Receptor 1, (PAR1)) serves as a critical translator of the spinal cord injury (SCI) proteolytic microenvironment into a cascade of pro-inflammatory events that contribute to astrogliosis and functional decline. PAR1 knockout mice displayed improved locomotor recovery after SCI and reduced signatures of inflammation and astrogliosis, including expression of glial fibrillary acidic protein (GFAP), vimentin, and STAT3 signaling. SCI-associated elevations in pro-inflammatory cytokines such as IL-1ß and IL-6 were also reduced in PAR1-/- mice and co-ordinate improvements in tissue sparing and preservation of NeuN-positive ventral horn neurons, and PKCγ corticospinal axons, were observed. PAR1 and its agonist's thrombin and neurosin were expressed by perilesional astrocytes and each agonist increased the production of IL-6 and STAT3 signaling in primary astrocyte cultures in a PAR1-dependent manner. In turn, IL-6-stimulated astrocytes increased expression of PAR1, thrombin, and neurosin, pointing to a model in which PAR1 activation contributes to increased astrogliosis by feedforward- and feedback-signaling dynamics. Collectively, these findings identify the thrombin receptor as a key mediator of inflammation and astrogliosis in the aftermath of SCI that can be targeted to reduce neurodegeneration and improve neurobehavioral recovery.


Asunto(s)
Gliosis/patología , Receptores de Trombina/metabolismo , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/metabolismo , Animales , Astrocitos/metabolismo , Axones/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/metabolismo , Inflamación/metabolismo , Ratones Transgénicos , Transducción de Señal/fisiología , Traumatismos de la Médula Espinal/fisiopatología
16.
Biol Chem ; 397(12): 1277-1286, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27533119

RESUMEN

Kallikrein-related peptidase 6 (Klk6) is elevated in the serum of multiple sclerosis (MS) patients and is hypothesized to participate in inflammatory and neuropathogenic aspects of the disease. To test this hypothesis, we investigated the impact of systemic administration of recombinant Klk6 on the development and progression of MOG35-55-induced experimental autoimmune encephalomyelitis (EAE). First, we determined that Klk6 expression is elevated in the spinal cord of mice with EAE at the peak of clinical disease and in immune cells upon priming with the disease-initiating peptide in vitro. Systemic administration of recombinant Klk6 to mice during the priming phase of disease resulted in an exacerbation of clinical symptoms, including earlier onset of disease and higher levels of spinal cord inflammation and pathology. Treatment of MOG35-55-primed immune cells with Klk6 in culture enhanced expression of pro-inflammatory cytokines, interferon-γ, tumor necrosis factor, and interleukin-17, while reducing anti-inflammatory cytokines interleukin-4 and interleukin-5. Together these findings provide evidence that elevations in systemic Klk6 can bias the immune system towards pro-inflammatory responses capable of exacerbating the development of neuroinflammation and paralytic neurological deficits. We suggest that Klk6 represents an important target for conditions in which pro-inflammatory responses play a critical role in disease development, including MS.


Asunto(s)
Calicreínas/metabolismo , Esclerosis Múltiple/enzimología , Animales , Modelos Animales de Enfermedad , Femenino , Regulación Enzimológica de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Médula Espinal/enzimología , Bazo/inmunología
17.
Glia ; 63(5): 846-59, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25628003

RESUMEN

Hemorrhagic white matter injuries in the perinatal period are a growing cause of cerebral palsy yet no neuroprotective strategies exist to prevent the devastating motor and cognitive deficits that ensue. We demonstrate that the thrombin receptor (protease-activated receptor 1, PAR1) exhibits peak expression levels in the spinal cord at term and is a critical regulator of the myelination continuum from initiation to the final levels achieved. Specifically, PAR1 gene deletion resulted in earlier onset of spinal cord myelination, including substantially more Olig2-positive oligodendrocytes, more myelinated axons, and higher proteolipid protein (PLP) levels at birth. In vitro, the highest levels of PAR1 were observed in oligodendrocyte progenitor cells (OPCs), being reduced with differentiation. In parallel, the expression of PLP and myelin basic protein (MBP), in addition to Olig2, were all significantly higher in cultures of PAR1-/- oligodendroglia. Moreover, application of a small molecule inhibitor of PAR1 (SCH79797) to OPCs in vitro increased PLP and MBP expression. Enhancements in myelination associated with PAR1 genetic deletion were also observed in adulthood as evidenced by higher amounts of MBP and thickened myelin sheaths across large, medium, and small diameter axons. Enriched spinal cord myelination in PAR1-/- mice was coupled to increases in extracellular-signal-regulated kinase 1/2 and AKT signaling developmentally. Nocturnal ambulation and rearing activity were also elevated in PAR1-/- mice. These studies identify the thrombin receptor as a powerful extracellular regulatory switch that could be readily targeted to improve myelin production in the face of white matter injury and disease.


Asunto(s)
Líquido Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Receptor PAR-1/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Proteínas de la Mielina/genética , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/ultraestructura , Neuroglía/metabolismo , Receptor PAR-1/genética , Células Madre/metabolismo
18.
Neurobiol Dis ; 83: 75-89, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26316358

RESUMEN

Inflammatory-astrogliosis exacerbates damage in the injured spinal cord and limits repair. Here we identify Protease Activated Receptor 2 (PAR2) as an essential regulator of these events with mice lacking the PAR2 gene showing greater improvements in motor coordination and strength after compression-spinal cord injury (SCI) compared to wild type littermates. Molecular profiling of the injury epicenter, and spinal segments above and below, demonstrated that mice lacking PAR2 had significantly attenuated elevations in key hallmarks of astrogliosis (glial fibrillary acidic protein (GFAP), vimentin and neurocan) and in expression of pro-inflammatory cytokines (interleukin-6 (IL-6), tumor necrosis factor (TNF) and interleukin-1 beta (IL-1ß)). SCI in PAR2-/- mice was also accompanied by improved preservation of protein kinase C gamma (PKCγ)-immunopositive corticospinal axons and reductions in GFAP-immunoreactivity, expression of the pro-apoptotic marker BCL2-interacting mediator of cell death (BIM), and in signal transducer and activator of transcription 3 (STAT3). The potential mechanistic link between PAR2, STAT3 and astrogliosis was further investigated in primary astrocytes to reveal that the SCI-related serine protease, neurosin (kallikrein 6) promotes IL-6 secretion in a PAR2 and STAT3-dependent manner. Data point to a signaling circuit in primary astrocytes in which neurosin signaling at PAR2 promotes IL-6 secretion and canonical STAT3 signaling. IL-6 promotes expression of GFAP, vimentin, additional IL-6 and robust increases in both neurosin and PAR2, thereby driving the PAR2-signaling circuit forward. Given the significant reductions in astrogliosis and inflammation as well as superior neuromotor recovery observed in PAR2 knockout mice after SCI, we suggest that this receptor and its agonists represent new drug targets to foster neuromotor recovery.


Asunto(s)
Astrocitos/metabolismo , Calicreínas/metabolismo , Mielitis/metabolismo , Receptor PAR-2/metabolismo , Recuperación de la Función , Transducción de Señal , Traumatismos de la Médula Espinal/metabolismo , Animales , Apoptosis , Astrocitos/patología , Axones/metabolismo , Axones/patología , Femenino , Mediadores de Inflamación/metabolismo , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Mielitis/etiología , Mielitis/patología , Proteína Quinasa C/metabolismo , Tractos Piramidales/metabolismo , Tractos Piramidales/patología , Receptor PAR-2/genética , Factor de Transcripción STAT3/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/patología
19.
BMC Cancer ; 15: 565, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26231762

RESUMEN

BACKGROUND: Kallikreins have clinical value as prognostic markers in a subset of malignancies examined to date, including kallikrein 3 (prostate specific antigen) in prostate cancer. We previously demonstrated that kallikrein 6 is expressed at higher levels in grade IV compared to grade III astrocytoma and is associated with reduced survival of GBM patients. METHODS: In this study we determined KLK1, KLK6, KLK7, KLK8, KLK9 and KLK10 protein expression in two independent tissue microarrays containing 60 grade IV and 8 grade III astrocytoma samples. Scores for staining intensity, percent of tumor stained and immunoreactivity scores (IR, product of intensity and percent) were determined and analyzed for correlation with patient survival. RESULTS: Grade IV glioma was associated with higher levels of kallikrein-immunostaining compared to grade III specimens. Univariable Cox proportional hazards regression analysis demonstrated that elevated KLK6- or KLK7-IR was associated with poor patient prognosis. In addition, an increased percent of tumor immunoreactive for KLK6 or KLK9 was associated with decreased survival in grade IV patients. Kaplan-Meier survival analysis indicated that patients with KLK6-IR < 10, KLK6 percent tumor core stained < 3, or KLK7-IR < 9 had a significantly improved survival. Multivariable analysis indicated that the significance of these parameters was maintained even after adjusting for gender and performance score. CONCLUSIONS: These data suggest that elevations in glioblastoma KLK6, KLK7 and KLK9 protein have utility as prognostic markers of patient survival.


Asunto(s)
Astrocitoma/patología , Neoplasias Encefálicas/patología , Calicreínas/metabolismo , Astrocitoma/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/metabolismo , Humanos , Pronóstico , Análisis de Supervivencia , Análisis de Matrices Tisulares/métodos , Regulación hacia Arriba
20.
Biol Chem ; 395(9): 1063-73, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25153387

RESUMEN

Recent studies provide a functional link between kallikrein 6 (Klk6) and the development and progression of disease in patients with multiple sclerosis (MS) and in its murine models. To evaluate the involvement of additional kallikrein family members, we compared Klk6 expression with four other kallikreins (Klk1, Klk7, Klk8, and Klk10) in the brain and spinal cord of mice infected with Theiler's murine encephalomyelitis virus, an experimental model of progressive MS. The robust upregulation of Klk6 and Klk8 in the brain during the acute phase of viral encephalitis and in the spinal cord during disease development and progression points to their participation in inflammation, demyelination, and progressive axon degeneration. More limited changes in Klk1, Klk7, and Klk10 were also observed. In addition, Klk1, Klk6, and Klk10 were dynamically regulated in T cells in vitro as a recall response to viral antigen and in activated monocytes, pointing to their activities in the development of adaptive and innate immune function. Together, these results point to overlapping and unique roles for multiple kallikreins in the development and progression of virus-mediated central nervous system inflammatory demyelinating disease, including activities in the development of the adaptive and innate immune response, in demyelination, and in progressive axon degeneration.


Asunto(s)
Inmunidad Adaptativa/genética , Perfilación de la Expresión Génica , Inmunidad Innata/genética , Calicreínas/genética , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/virología , Theilovirus/fisiología , Animales , Encéfalo/patología , Proteínas de la Cápside/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Calicreínas/metabolismo , Activación de Linfocitos/genética , Ratones , Monocitos/metabolismo , Esclerosis Múltiple/genética , Médula Espinal/patología , Bazo/patología , Linfocitos T/metabolismo , Factores de Tiempo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA