Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomedicine ; 44: 102584, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35850421

RESUMEN

A vaccine candidate to SARS-CoV-2 was constructed by coupling the viral receptor binding domain (RBD) to the surface of the papaya mosaic virus (PapMV) nanoparticle (nano) to generate the RBD-PapMV vaccine. Immunization of mice with the coupled RBD-PapMV vaccine enhanced the antibody titers and the T-cell mediated immune response directed to the RBD antigen as compared to immunization with the non-coupled vaccine formulation (RBD + PapMV nano). Anti-RBD antibodies, generated in vaccinated animals, neutralized SARS-CoV-2 infection in vitro against the ancestral, Delta and the Omicron variants. At last, immunization of mice susceptible to the infection by SARS-CoV-2 (K18-hACE2 transgenic mice) with the RBD-PapMV vaccine induced protection to the ancestral SARS-CoV-2 infectious challenge. The induction of the broad neutralization against SARS-CoV-2 variants induced by the RBD-PapMV vaccine demonstrate the potential of the PapMV vaccine platform in the development of efficient vaccines against viral respiratory infections.


Asunto(s)
COVID-19 , Nanopartículas , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Ratones , Ratones Endogámicos BALB C , Potexvirus , SARS-CoV-2
2.
Heliyon ; 10(10): e31026, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38826717

RESUMEN

Background: Measuring the ability of SARS-CoV-2 antibodies to neutralize live viruses remains an effective approach to quantify the level of protection of individuals. We assessed the neutralization activity against the ancestral SARS-CoV-2, Delta, Omicron BA.1, BA.2, BA.2.12.1, BA.4 and BA.5 strains, in 280 vaccinated restaurant/bar, grocery and hardware store workers in Québec, Canada. Methods: Participants were recruited during the emergence of Omicron BA.1 variant. The neutralizing activity of participant sera was assessed by microneutralization assay. Results: Serum neutralizing antibody (NtAb) titers of all participants against the ancestral SARS-CoV-2 strain were comparable with those against Delta variant (ranges of titers 10-2032 and 10-2560, respectively), however, their response was significantly reduced against Omicron BA.1, BA2, BA.2.12.1, BA.4 and BA.5 (10-1016, 10-1016, 10-320, 10-80 and 10-254, respectively). Individuals who received 2 doses of vaccine had significantly reduced NtAb titers against all SARS-CoV-2 strains compared to those infected and then vaccinated (≥1 dose), vaccinated (≥2 doses) and then infected, or those who received 3 doses of vaccine. Participants vaccinated with 2 or 3 doses of vaccine and then infected had the highest NtAb titers against all SARS-CoV-2 strains tested. Conclusion: We assessed for the first time the NtAb response in food and retail workers. We found that vaccination prior to the emergence of Omicron BA.1 was associated with higher neutralizing activity against pre-Omicron variants, suggesting the importance of updating vaccines to increase antibody response against new SARS-CoV-2 variants. Vaccination followed by infection was associated with higher neutralizing activity against all SARS-CoV-2 strains tested.

3.
N Biotechnol ; 64: 9-16, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33984500

RESUMEN

Nanobodies are the smallest antibody fragments which bind to antigens with high affinity and specificity. Due to their outstanding physicochemical stability, simplicity and cost-effective production, nanobodies have become powerful agents in therapeutic and diagnostic applications. In this work, the advantages of nanobodies were exploited to develop generic and standardized anti-human IgM reagents for serology and IgM+ B-cell analysis. Selection of anti-IgM nanobodies was carried out by evaluating their yields, stability, binding kinetics and cross-reactivity with other Ig isotypes. High affinity nanobodies were selected with dissociation constants (KDs) in the nM range and high sensitivities for detection of total IgM by ELISA. The nanobodies also proved to be useful for capturing IgM in the serodiagnosis of an acute infection as demonstrated by detection of specific IgM in sera of dengue virus patients. Finally, due to the lack of an Fc region, the selected nanobodies do not require Fc receptor blocking steps, facilitating the immunophenotyping of IgM+ cells by flow cytometry, an important means of diagnosis of immunodeficiencies and B-cell lymphoproliferative disorders. This work describes versatile anti-IgM nanobodies that, due to their recombinant nature and ease of reproduction at low cost, may represent an advantageous alternative to conventional anti-IgM antibodies in research and diagnosis.


Asunto(s)
Anticuerpos Antiidiotipos , Indicadores y Reactivos , Anticuerpos de Dominio Único , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina M
4.
Microorganisms ; 9(3)2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33804420

RESUMEN

Streptococcus thermophilus relies heavily on two type II-A CRISPR-Cas systems, CRISPR1 and CRISPR3, to resist siphophage infections. One hallmark of these systems is the integration of a new spacer at the 5' end of the CRISPR arrays following phage infection. However, we have previously shown that ectopic acquisition of spacers can occur within the CRISPR1 array. Here, we present evidence of the acquisition of new spacers within the array of CRISPR3 of S. thermophilus. The analysis of randomly selected bacteriophage-insensitive mutants of the strain Uy01 obtained after phage infection, as well as the comparison with other S. thermophilus strains with similar CRISPR3 content, showed that a specific spacer within the array could be responsible for misguiding the adaptation complex. These results also indicate that while the vast majority of new spacers are added at the 5' end of the CRISPR array, ectopic spacer acquisition is a common feature of both CRISPR1 and CRISPR3 systems in S. thermophilus, and it can still provide phage resistance. Ectopic spacer acquisition also appears to have occurred naturally in some strains of Streptococcus pyogenes, suggesting that it is a general phenomenon, at least in type II-A systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA