Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Metab ; 66: 101596, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36100179

RESUMEN

OBJECTIVE: Metabolomics as an approach to solve biological problems is exponentially increasing in use. Thus, this a pivotal time for the adoption of best practices. It is well known that disrupted tissue oxygen supply rapidly alters cellular energy charge. However, the speed and extent to which delayed mouse tissue freezing after dissection alters the broad metabolome is not well described. Furthermore, how tissue genotype may modulate such metabolomic drift and the degree to which traced 13C-isotopologue distributions may change have not been addressed. METHODS: By combined liquid chromatography (LC)- and gas chromatography (GC)-mass spectrometry (MS), we measured how levels of 255 mouse liver metabolites changed following 30-second, 1-minute, 3-minute, and 10-minute freezing delays. We then performed test-of-concept delay-to-freeze experiments evaluating broad metabolomic drift in mouse heart and skeletal muscle, differential metabolomic change between wildtype (WT) and mitochondrial pyruvate carrier (MPC) knockout mouse livers, and shifts in 13C-isotopologue abundances and enrichments traced from 13C-labled glucose into mouse liver. RESULTS: Our data demonstrate that delayed mouse tissue freezing after dissection leads to rapid hypoxia-driven remodeling of the broad metabolome, induction of both false-negative and false-positive between-genotype differences, and restructuring of 13C-isotopologue distributions. Notably, we show that increased purine nucleotide degradation products are an especially high dynamic range marker of delayed liver and heart freezing. CONCLUSIONS: Our findings provide a previously absent, systematic illustration of the extensive, multi-domain metabolomic changes occurring within the early minutes of delayed tissue freezing. They also provide a novel, detailed resource of mouse liver ex vivo, hypoxic metabolomic remodeling.


Asunto(s)
Metaboloma , Metabolómica , Animales , Ratones , Metaboloma/fisiología , Metabolómica/métodos , Hipoxia , Ratones Noqueados , Genotipo
2.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2125-2137, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31029826

RESUMEN

Cardiac metabolism affects systemic energetic balance. Previously, we showed that Krüppel-like factor (KLF)-5 regulates cardiomyocyte PPARα and fatty acid oxidation-related gene expression in diabetes. We surprisingly found that cardiomyocyte-specific KLF5 knockout mice (αMHC-KLF5-/-) have accelerated diet-induced obesity, associated with increased white adipose tissue (WAT). Alterations in cardiac expression of the mediator complex subunit 13 (Med13) modulates obesity. αMHC-KLF5-/- mice had reduced cardiac Med13 expression likely because KLF5 upregulates Med13 expression in cardiomyocytes. We then investigated potential mechanisms that mediate cross-talk between cardiomyocytes and WAT. High fat diet-fed αMHC-KLF5-/- mice had increased levels of cardiac and plasma FGF21, while food intake, activity, plasma leptin, and natriuretic peptides expression were unchanged. Consistent with studies reporting that FGF21 signaling in WAT decreases sumoylation-driven PPARγ inactivation, αMHC-KLF5-/- mice had less SUMO-PPARγ in WAT. Increased diet-induced obesity found in αMHC-KLF5-/- mice was absent in αMHC-[KLF5-/-;FGF21-/-] double knockout mice, as well as in αMHC-FGF21-/- mice that we generated. Thus, cardiomyocyte-derived FGF21 is a component of pro-adipogenic crosstalk between heart and WAT.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Peso Corporal , Dieta Alta en Grasa , Femenino , Factores de Crecimiento de Fibroblastos/sangre , Factores de Crecimiento de Fibroblastos/genética , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Leptina/sangre , Masculino , Complejo Mediador/genética , Complejo Mediador/metabolismo , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Obesidad/etiología , Transducción de Señal
3.
Cell Rep ; 28(10): 2608-2619.e6, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484072

RESUMEN

Hepatocellular carcinoma (HCC) is a devastating cancer increasingly caused by non-alcoholic fatty liver disease (NAFLD). Disrupting the liver Mitochondrial Pyruvate Carrier (MPC) in mice attenuates NAFLD. Thus, we considered whether liver MPC disruption also prevents HCC. Here, we use the N-nitrosodiethylamine plus carbon tetrachloride model of HCC development to test how liver-specific MPC knock out affects hepatocellular tumorigenesis. Our data show that liver MPC ablation markedly decreases tumorigenesis and that MPC-deficient tumors transcriptomically downregulate glutathione metabolism. We observe that MPC disruption and glutathione depletion in cultured hepatomas are synthetically lethal. Stable isotope tracing shows that hepatocyte MPC disruption reroutes glutamine from glutathione synthesis into the tricarboxylic acid (TCA) cycle. These results support a model where inducing metabolic competition for glutamine by MPC disruption impairs hepatocellular tumorigenesis by limiting glutathione synthesis. These findings raise the possibility that combining MPC disruption and glutathione stress may be therapeutically useful in HCC and additional cancers.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma Hepatocelular/metabolismo , Ciclo del Ácido Cítrico , Glutamina/metabolismo , Glutatión/biosíntesis , Neoplasias Hepáticas/metabolismo , Mitocondrias/metabolismo , Ácido Pirúvico/metabolismo , Animales , Apoptosis , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Hepatocitos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Ratones Endogámicos C57BL , Proteínas de Neoplasias/metabolismo , Especificidad de Órganos , Transcriptoma/genética
4.
Elife ; 82019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31305240

RESUMEN

Metabolic cycles are a fundamental element of cellular and organismal function. Among the most critical in higher organisms is the Cori Cycle, the systemic cycling between lactate and glucose. Here, skeletal muscle-specific Mitochondrial Pyruvate Carrier (MPC) deletion in mice diverted pyruvate into circulating lactate. This switch disinhibited muscle fatty acid oxidation and drove Cori Cycling that contributed to increased energy expenditure. Loss of muscle MPC activity led to strikingly decreased adiposity with complete muscle mass and strength retention. Notably, despite decreasing muscle glucose oxidation, muscle MPC disruption increased muscle glucose uptake and whole-body insulin sensitivity. Furthermore, chronic and acute muscle MPC deletion accelerated fat mass loss on a normal diet after high fat diet-induced obesity. Our results illuminate the role of the skeletal muscle MPC as a whole-body carbon flux control point. They highlight the potential utility of modulating muscle pyruvate utilization to ameliorate obesity and type 2 diabetes.


Asunto(s)
Glucosa/metabolismo , Redes y Vías Metabólicas , Mitocondrias Musculares/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Ácido Pirúvico/metabolismo , Delgadez , Adiposidad , Animales , Proteínas de Transporte de Anión/deficiencia , Eliminación de Gen , Lactatos/metabolismo , Ratones , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Transportadores de Ácidos Monocarboxílicos/deficiencia , Fuerza Muscular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA