Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36364395

RESUMEN

Opuntia ficus-indica biological effects are attributed to several bioactive metabolites. However, these actions could be altered in vivo by biotransformation reactions mainly via gut microbiota. This study assessed gut microbiota effect on the biotransformation of O. ficus-indica metabolites both in vitro and ex vivo. Two-time aliquots (0.5 and 24 h) from the in vitro assay were harvested post incubation of O. ficus-indica methanol extract with microbial consortium, while untreated and treated samples with fecal bacterial culture from the ex vivo assay were prepared. Metabolites were analyzed using UHPLC-QTOF-MS, with flavonoid glycosides completely hydrolyzed in vitro at 24 h being converted to two major metabolites, 3-(4-hydroxyphenyl)propanoic acid and phloroglucinol, concurrent with an increase in the gallic acid level. In case of the ex vivo assay, detected flavonoid glycosides in untreated sample were completely absent from treated counterpart with few flavonoid aglycones and 3-(4-hydroxyphenyl)propanoic acid in parallel to an increase in piscidic acid. In both assays, fatty and organic acids were completely hydrolyzed being used as energy units for bacterial growth. Chemometric tools were employed revealing malic and (iso)citric acids as the main discriminating metabolites in vitro showing an increased abundance at 0.5 h, whereas in ex vivo assay, (iso)citric, aconitic and mesaconic acids showed an increase at untreated sample. Piscidic acid was a significant marker for the ex vivo treated sample. DPPH, ORAC and FRAP assays were further employed to determine whether these changes could be associated with changes in antioxidant activity, and all assays showed a decline in antioxidant potential post biotransformation.


Asunto(s)
Microbioma Gastrointestinal , Opuntia , Antioxidantes/farmacología , Frutas , Extractos Vegetales/farmacología , Flavonoides , Glicósidos , Biotransformación
2.
Rapid Commun Mass Spectrom ; 35(1): e8941, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32885498

RESUMEN

RATIONALE: Tracing isotopically labeled water into proteins allows for the detection of species-specific metabolic activity in complex communities. However, a stress response may alter the newly synthesized proteins. METHODS: We traced 18-oxygen from heavy water into proteins of Escherichia coli K12 grown from permissive to retardant temperatures. All samples were analyzed using UPLC/Orbitrap Q-Exactive-MS/MS operating in positive electrospray ionization mode. RESULTS: We found that warmer temperatures resulted in significantly (P-value < 0.05) higher incorporation of 18-oxygen as seen by both substrate utilization as relative isotope abundance (RIA) and growth as labeling ratio (LR). However, the absolute number of peptides with incorporation of 18-oxygen showed no significant correlation to temperature, potentially caused by the synthesis of different proteins at low temperatures, namely, proteins related to cold stress response. CONCLUSIONS: Our results unveil the species-specific cold stress response of E. coli K12 that could be misinterpreted as general growth; this is why the quantity as RIA and LR but also the quality as absolute number of peptides with incorporation (relative abundance, RA) and their function must be considered to fully understand the activity of microbial communities.


Asunto(s)
Respuesta al Choque por Frío/fisiología , Escherichia coli K12 , Proteínas de Escherichia coli , Marcaje Isotópico/métodos , Isótopos de Oxígeno , Cromatografía Líquida de Alta Presión/métodos , Frío , Escherichia coli K12/química , Escherichia coli K12/metabolismo , Escherichia coli K12/fisiología , Proteínas de Escherichia coli/análisis , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Isótopos de Oxígeno/análisis , Isótopos de Oxígeno/metabolismo , Espectrometría de Masas en Tándem/métodos
3.
Expert Rev Proteomics ; 17(2): 163-173, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32174200

RESUMEN

Introduction: Metaproteomics is an established method to obtain a comprehensive taxonomic and functional view of microbial communities. After more than a decade, we are now able to describe the promise, reality, and perspectives of metaproteomics and provide useful information about the choice of method, applications, and potential improvement strategies.Areas covered: In this article, we will discuss current challenges of species and proteome coverage, and also highlight functional aspects of metaproteomics analysis of microbial communities with different levels of complexity. To do this, we re-analyzed data from microbial communities with low to high complexity (8, 72, 200 and >300 species). High species diversity leads to a reduced number of protein group identifications in a complex community, and thus the number of species resolved is underestimated. Ultimately, low abundance species remain undiscovered in complex communities. However, we observed that the main functional categories were better represented within complex microbiomes when compared to species coverage.Expert opinion: Our findings showed that even with low species coverage, metaproteomics has the potential to reveal habitat-specific functional features. Finally, we exploit this information to highlight future research avenues that are urgently needed to enhance our understanding of taxonomic composition and functions of complex microbiomes.


Asunto(s)
Metabolómica/métodos , Metagenómica/métodos , Microbiota , Proteómica/métodos , Redes y Vías Metabólicas , Metabolómica/normas , Metagenoma , Metagenómica/normas , Proteoma/genética , Proteoma/metabolismo , Proteómica/normas
4.
J Proteomics ; 222: 103791, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32335296

RESUMEN

Stable isotope probing (SIP) approaches are a suitable tool to identify active organisms in bacterial communities, but adding isotopically labeled substrate can alter both the structure and the functionality of the community. Here, we validated and demonstrated a substrate-independent protein-SIP protocol using isotopically labeled water that captures the entire microbial activity of a community. We found that 18O yielded a higher incorporation rate into peptides and thus comprised a higher sensitivity. We then applied the method to an in vitro model of a human distal gut microbial ecosystem grown in two medium formulations, to evaluate changes in microbial activity between a high-fiber and high-protein diet. We showed that only little changes are seen in the community structure but the functionality varied between the diets. In conclusion, our approach can detect species-specific metabolic activity in complex bacterial communities and more specifically to quantify the amount of amino acid synthesis. Heavy water makes possible to analyze the activity of bacterial communities for which adding an isotopically labeled energy and nutrient sources is not easily feasible. SIGNIFICANCE: Heavy stable isotopes allow for the detection of active key players in complex ecosystems where many organisms are thought to be dormant. Opposed to the labelling with energy or nutrient sources, heavy water could be a suitable replacement to trace activity, which has been shown for DNA and RNA. Here we validate, quantify and compare the incorporation of heavy water either labeled with deuterium or 18­oxygen into proteins of Escherichia coli K12 and of an in vitro model of a human gut microbial ecosystem. The significance of our research is in providing a freely available pipeline to analyze the incorporation of deuterium and 18­oxygen into proteins together with the validation of the applicability of tracing heavy water as a proxy for activity. Our approach unveils the relative functional contribution of microbiota in complex ecosystems, which will improve our understanding of both animal- and environment-associated microbiomes and in vitro models.


Asunto(s)
Microbiota , Proteínas , Animales , Isótopos de Carbono/análisis , Óxido de Deuterio , Humanos , Marcaje Isotópico
5.
Microorganisms ; 8(9)2020 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-32961728

RESUMEN

Bisphenol S (BPS) is an industrial chemical used in the process of polymerization of polycarbonate plastics and epoxy resins and thus can be found in various plastic products and thermal papers. The microbiota disrupting effect of BPS on the community structure of the microbiome has already been reported, but little is known on how BPS affects bacterial activity and function. To analyze these effects, we cultivated the simplified human intestinal microbiota (SIHUMIx) in bioreactors at a concentration of 45 µM BPS. By determining biomass, growth of SIHUMIx was followed but no differences during BPS exposure were observed. To validate if the membrane composition was affected, fatty acid methyl esters (FAMEs) profiles were compared. Changes in the individual membrane fatty acid composition could not been described; however, the saturation level of the membranes slightly increased during BPS exposure. By applying targeted metabolomics to quantify short-chain fatty acids (SCFA), it was shown that the activity of SIHUMIx was unaffected. Metaproteomics revealed temporal effect on the community structure and function, showing that BPS has minor effects on the structure or functionality of SIHUMIx.

6.
Microorganisms ; 7(12)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31816881

RESUMEN

Many functions in host-microbiota interactions are potentially influenced by intestinal transit times, but little is known about the effects of altered transition times on the composition and functionality of gut microbiota. To analyze these effects, we cultivated the model community SIHUMIx in bioreactors in order to determine the effects of varying transit times (TT) on the community structure and function. After five days of continuous cultivation, we investigated the influence of different medium TT of 12 h, 24 h, and 48 h. For profiling the microbial community, we applied flow cytometric fingerprinting and revealed changes in the community structure of SIHUMIx during the change of TT, which were not associated with changes in species abundances. For pinpointing metabolic alterations, we applied metaproteomics and metabolomics and found, along with shortening the TT, a slight decrease in glycan biosynthesis, carbohydrate, and amino acid metabolism and, furthermore, a reduction in butyrate, methyl butyrate, isobutyrate, valerate, and isovalerate concentrations. Specifically, B. thetaiotaomicron was identified to be affected in terms of butyrate metabolism. However, communities could recover to the original state afterward. This study shows that SIHUMIx showed high structural stability when TT changed-even four-fold. Resistance values remained high, which suggests that TTs did not interfere with the structure of the community to a certain degree.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA