Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Neurosci ; 39(44): 8632-8644, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31537706

RESUMEN

Persistent activity of protein kinase M (PKM), the truncated form of protein kinase C (PKC), can maintain long-term changes in synaptic strength in many systems, including the hermaphrodite marine mollusk, Aplysia californica Moreover, different types of long-term facilitation (LTF) in cultured Aplysia sensorimotor synapses rely on the activities of different PKM isoforms in the presynaptic sensory neuron and postsynaptic motor neuron. When the atypical PKM isoform is required, the kidney and brain expressed adaptor protein (KIBRA) is also required. Here, we explore how this isoform specificity is established. We find that PKM overexpression in the motor neuron, but not the sensory neuron, is sufficient to increase synaptic strength and that this activity is not isoform-specific. KIBRA is not the rate-limiting step in facilitation since overexpression of KIBRA is neither sufficient to increase synaptic strength, nor to prolong a form of PKM-dependent intermediate synaptic facilitation. However, the isoform specificity of dominant-negative-PKMs to erase LTF is correlated with isoform-specific competition for stabilization by KIBRA. We identify a new conserved region of KIBRA. Different splice isoforms in this region stabilize different PKMs based on the isoform-specific sequence of an α-helix "handle" in the PKMs. Thus, specific stabilization of distinct PKMs by different isoforms of KIBRA can explain the isoform specificity of PKMs during LTF in AplysiaSIGNIFICANCE STATEMENT Long-lasting changes in synaptic plasticity associated with memory formation are maintained by persistent protein kinases. We have previously shown in the Aplysia sensorimotor model that distinct isoforms of persistently active protein kinase Cs (PKMs) maintain distinct forms of long-lasting synaptic changes, even when both forms are expressed in the same motor neuron. Here, we show that, while the effects of overexpression of PKMs are not isoform-specific, isoform specificity is defined by a "handle" helix in PKMs that confers stabilization by distinct splice forms in a previously undefined domain of the adaptor protein KIBRA. Thus, we define new regions in both KIBRA and PKMs that define the isoform specificity for maintaining synaptic strength in distinct facilitation paradigms.


Asunto(s)
Neuronas Motoras/fisiología , Plasticidad Neuronal , Isoformas de Proteínas/fisiología , Proteína Quinasa C/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Aplysia , Células Cultivadas , Ganglios de Invertebrados/fisiología , Proteínas del Tejido Nervioso/fisiología , Estabilidad Proteica
2.
J Neurosci ; 37(10): 2746-2763, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28179558

RESUMEN

Multiple kinase activations contribute to long-term synaptic plasticity, a cellular mechanism mediating long-term memory. The sensorimotor synapse of Aplysia expresses different forms of long-term facilitation (LTF)-nonassociative and associative LTF-that require the timely activation of kinases, including protein kinase C (PKC). It is not known which PKC isoforms in the sensory neuron or motor neuron L7 are required to sustain each form of LTF. We show that different PKMs, the constitutively active isoforms of PKCs generated by calpain cleavage, in the sensory neuron and L7 are required to maintain each form of LTF. Different PKMs or calpain isoforms were blocked by overexpressing specific dominant-negative constructs in either presynaptic or postsynaptic neurons. Blocking either PKM Apl I in L7, or PKM Apl II or PKM Apl III in the sensory neuron 2 d after 5-hydroxytryptamine (5-HT) treatment reversed persistent nonassociative LTF. In contrast, blocking either PKM Apl II or PKM Apl III in L7, or PKM Apl II in the sensory neuron 2 d after paired stimuli reversed persistent associative LTF. Blocking either classical calpain or atypical small optic lobe (SOL) calpain 2 d after 5-HT treatment or paired stimuli did not disrupt the maintenance of persistent LTF. Soon after 5-HT treatment or paired stimuli, however, blocking classical calpain inhibited the expression of persistent associative LTF, while blocking SOL calpain inhibited the expression of persistent nonassociative LTF. Our data suggest that different stimuli activate different calpains that generate specific sets of PKMs in each neuron whose constitutive activities sustain long-term synaptic plasticity.SIGNIFICANCE STATEMENT Persistent synaptic plasticity contributes to the maintenance of long-term memory. Although various kinases such as protein kinase C (PKC) contribute to the expression of long-term plasticity, little is known about how constitutive activation of specific kinase isoforms sustains long-term plasticity. This study provides evidence that the cell-specific activities of different PKM isoforms generated from PKCs by calpain-mediated cleavage maintain two forms of persistent synaptic plasticity, which are the cellular analogs of two forms of long-term memory. Moreover, we found that the activation of specific calpains depends on the features of the stimuli evoking the different forms of synaptic plasticity. Given the recent controversy over the role of PKMζ maintaining memory, these findings are significant in identifying roles of multiple PKMs in the retention of memory.


Asunto(s)
Calpaína/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/clasificación , Neuronas/fisiología , Proteína Quinasa C/metabolismo , Transmisión Sináptica/fisiología , Animales , Aplysia , Células Cultivadas , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Memoria a Largo Plazo/fisiología , Isoformas de Proteínas , Sinapsis/clasificación , Sinapsis/fisiología
3.
J Neurosci ; 35(49): 16159-70, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26658867

RESUMEN

Synapses express different forms of plasticity that contribute to different forms of memory, and both memory and plasticity can become labile after reactivation. We previously reported that a persistent form of nonassociative long-term facilitation (PNA-LTF) of the sensorimotor synapses in Aplysia californica, a cellular analog of long-term sensitization, became labile with short-term heterosynaptic reactivation and reversed when the reactivation was followed by incubation with the protein synthesis inhibitor rapamycin. Here we examined the reciprocal impact of different forms of short-term plasticity (reactivations) on a persistent form of associative long-term facilitation (PA-LTF), a cellular analog of classical conditioning, which was expressed at Aplysia sensorimotor synapses when a tetanic stimulation of the sensory neurons was paired with a brief application of serotonin on 2 consecutive days. The expression of short-term homosynaptic plasticity [post-tetanic potentiation or homosynaptic depression (HSD)], or short-term heterosynaptic plasticity [serotonin-induced facilitation or neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFa)-induced depression], at synapses expressing PA-LTF did not affect the maintenance of PA-LTF. The kinetics of HSD was attenuated at synapses expressing PA-LTF, which required activation of protein kinase C (PKC). Both PA-LTF and the attenuated kinetics of HSD were reversed by either a transient blockade of PKC activity or a homosynaptic, but not heterosynaptic, reactivation when paired with rapamycin. These results indicate that two different forms of persistent synaptic plasticity, PA-LTF and PNA-LTF, expressed at the same synapse become labile when reactivated by different stimuli. SIGNIFICANCE STATEMENT: Activity-dependent changes in neural circuits mediate long-term memories. Some forms of long-term memories become labile and can be reversed with specific types of reactivations, but the mechanism is complex. At the cellular level, reactivations that induce a reversal of memory must evoke changes in neural circuits underlying the memory. What types of reactivations induce a labile state at neural connections that lead to reversal of different types of memory? We find that a critical neural connection in Aplysia, which is modified with different stimuli that mediate different types of memory, becomes labile with different types of reactivations. These results provide insights for developing strategies in alleviating maladaptive memories accompanying anxiety disorders.


Asunto(s)
Condicionamiento Clásico/fisiología , Potenciación a Largo Plazo/fisiología , Red Nerviosa/fisiología , Células Receptoras Sensoriales/fisiología , Sinapsis/fisiología , Animales , Aplysia , Benzofenantridinas/farmacología , Biofisica , Carbazoles/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , FMRFamida/farmacología , Ganglios Sensoriales/citología , Potenciación a Largo Plazo/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Técnicas de Placa-Clamp , Pirroles/farmacología , Serotonina/farmacología , Sinapsis/efectos de los fármacos , Factores de Tiempo
4.
J Neurosci ; 35(1): 386-95, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25568130

RESUMEN

Basic region leucine zipper (bZIP) transcription factors regulate gene expression critical for long-term synaptic plasticity or neuronal excitability contributing to learning and memory. At sensorimotor synapses of Aplysia, changes in activation or expression of CREB1 and CREB2 in sensory neurons are required for long-term synaptic plasticity. However, it is unknown whether concomitant stimulus-induced changes in expression and activation of bZIP transcription factors in the postsynaptic motor neuron also contribute to persistent long-term facilitation (P-LTF). We overexpressed various forms of CREB1, CREB2, or cJun in the postsynaptic motor neuron L7 in cell culture to examine whether these factors contribute to P-LTF. P-LTF is evoked by 2 consecutive days of 5-HT applications (2 5-HT), while a transient form of LTF is produced by 1 day of 5-HT applications (1 5-HT). Significant increases in the expression of both cJun and CREB2 mRNA in L7 accompany P-LTF. Overexpressing each bZIP factor in L7 did not alter basal synapse strength, while coexpressing cJun and CREB2 in L7 evoked persistent increases in basal synapse strength. In contrast, overexpressing cJun and CREB2 in sensory neurons evoked persistent decreases in basal synapse strength. Overexpressing wild-type cJun or CREB2, but not CREB1, in L7 can replace the second day of 5-HT applications in producing P-LTF. Reducing cJun activity in L7 blocked P-LTF evoked by 2 5-HT. These results suggest that expression and activation of different bZIP factors in both presynaptic and postsynaptic neurons contribute to persistent change in synapse strength including stimulus-dependent long-term synaptic plasticity.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/biosíntesis , Proteínas Quinasas JNK Activadas por Mitógenos/biosíntesis , Potenciación a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas Represoras/biosíntesis , Células Receptoras Sensoriales/metabolismo , Sinapsis/metabolismo , Potenciales Sinápticos/fisiología , Animales , Aplysia , Células Cultivadas
5.
J Neurosci ; 34(14): 4776-85, 2014 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-24695698

RESUMEN

Short-term and long-term synaptic plasticity are cellular correlates of learning and memory of different durations. Little is known, however, how these two forms of plasticity interact at the same synaptic connection. We examined the reciprocal impact of short-term heterosynaptic or homosynaptic plasticity at sensorimotor synapses of Aplysia in cell culture when expressing persistent long-term facilitation (P-LTF) evoked by serotonin [5-hydroxytryptamine (5-HT)]. Short-term heterosynaptic plasticity induced by 5-HT (facilitation) or the neuropeptide FMRFa (depression) and short-term homosynaptic plasticity induced by tetanus [post-tetanic potentiation (PTP)] or low-frequency stimulation [homosynaptic depression (HSD)] of the sensory neuron were expressed in both control synapses and synapses expressing P-LTF in the absence or presence of protein synthesis inhibitors. All forms of short-term plasticity failed to significantly affect ongoing P-LTF in the absence of protein synthesis inhibitors. However, P-LTF reversed to control levels when either 5-HT or FMRFa was applied in the presence of rapamycin. In contrast, P-LTF was unaffected when either PTP or HSD was evoked in the presence of either rapamycin or anisomycin. These results indicate that synapses expressing persistent plasticity acquire a "new" baseline and functionally express short-term changes as naive synapses, but the new baseline becomes labile following selective activations-heterosynaptic stimuli that evoke opposite forms of plasticity-such that when presented in the presence of protein synthesis inhibitors produce a rapid reversal of the persistent plasticity. Activity-selective induction of a labile state at synapses expressing persistent plasticity may facilitate the development of therapies for reversing inappropriate memories.


Asunto(s)
Plasticidad Neuronal/fisiología , Células Receptoras Sensoriales/fisiología , Sinapsis/fisiología , Análisis de Varianza , Animales , Anisomicina/farmacología , Aplysia , Biofisica , Células Cultivadas , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , FMRFamida/farmacología , Ganglios de Invertebrados/citología , Moduladores del Transporte de Membrana/farmacología , Plasticidad Neuronal/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Serotonina/farmacología , Sirolimus/farmacología , Sinapsis/clasificación , Sinapsis/efectos de los fármacos , Factores de Tiempo
6.
Learn Mem ; 21(3): 128-34, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24532836

RESUMEN

An important cellular mechanism contributing to the strength and duration of memories is activity-dependent alterations in the strength of synaptic connections within the neural circuit encoding the memory. Reversal of the memory is typically correlated with a reversal of the cellular changes to levels expressed prior to the stimulation. Thus, for stimulus-induced changes in synapse strength and their reversals to be functionally relevant, cellular mechanisms must regulate and maintain synapse strength both prior to and after the stimuli inducing learning and memory. The strengths of synapses within a neural circuit at any given moment are determined by cellular and molecular processes initiated during development and those subsequently regulated by the history of direct activation of the neural circuit and system-wide stimuli such as stress or motivational state. The cumulative actions of stimuli and other factors on an already modified neural circuit are attenuated by homeostatic mechanisms that prevent changes in overall synaptic inputs and excitability above or below specific set points (synaptic scaling). The mechanisms mediating synaptic scaling prevent potential excitotoxic alterations in the circuit but also may attenuate additional cellular changes required for learning and memory, thereby apparently limiting information storage. What cellular and molecular processes control synaptic strengths before and after experience/activity and its reversals? In this review we will explore the synapse-, whole cell-, and circuit level-specific processes that contribute to an overall zero sum-like set of changes and long-term maintenance of synapse strengths as a consequence of the accommodative interactions between long-term synaptic plasticity and homeostasis.


Asunto(s)
Memoria/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Homeostasis/fisiología , Humanos
7.
Science ; 383(6688): 1180-1181, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484060

RESUMEN

Stress induces a neurotransmitter switch that leads to fear in harmless situations.


Asunto(s)
Miedo , Neurotransmisores , Estrés Psicológico , Estrés Psicológico/metabolismo , Animales , Ratones , Neurotransmisores/metabolismo
8.
J Neurosci ; 31(24): 8841-50, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21677168

RESUMEN

Most memories are strengthened by additional stimuli, but it is unclear how additional stimulation or training reinforces long-term memory. To address this we examined whether long-term facilitation (LTF) of Aplysia sensorimotor synapses in cell culture-a cellular correlate of long-term sensitization of defensive withdrawal reflexes in Aplysia californica-can be prolonged by additional stimulation. We found that 1 d treatment with serotonin (5-HT; five brief applications at 20 min intervals) produced LTF lasting ∼3 d, whereas 2 d of such 5-HT treatments induced a persistent LTF lasting >7 d. Incubation with the protein synthesis inhibitor rapamycin during the second set of 5-HT treatments abolished all facilitation, and synapse strength returned prematurely to baseline. Persistent LTF required more persistent elevation in the expression of the neurotrophin-like peptide sensorin and its secretion. Activation of protein kinase C (PKC) during the second day of 5-HT treatments, not required for LTF or changes in sensorin expression during the first set of 5-HT treatments, is critical for persistent LTF and replaces phosphoinositide 3 kinase (PI3K) activity in mediating the increase in sensorin expression. In contrast, activations of PKC during the first day of 5-HT treatments and PI3K during the second day of 5-HT treatments are unnecessary for persistent LTF or the increases in sensorin expression. Thus, additional stimuli make preexisting plasticity labile as they recruit a new signaling cascade to regulate the synthesis of a neurotrophin-like peptide required for persistent alterations in synaptic efficacy.


Asunto(s)
Potenciación a Largo Plazo/fisiología , Células Receptoras Sensoriales/fisiología , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Anticuerpos/farmacología , Aplysia , Células Cultivadas , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Ganglios de Invertebrados/citología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunosupresores/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Neuropéptidos/inmunología , Neuropéptidos/metabolismo , Proteína Quinasa C/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Serotonina/farmacología , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Factores de Tiempo
9.
J Neurosci ; 30(25): 8353-66, 2010 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-20573882

RESUMEN

To explore the role of both Aplysia cell adhesion molecule (ApCAM) and activity of specific protein kinase C (PKC) isoforms in the initial formation of sensory neuron synapses with specific postsynaptic targets (L7 but not L11), we examined presynaptic growth, initial synapse formation, and the expression of the presynaptic neuropeptide sensorin following cell-specific reduction of ApCAM or of a novel PKC activity. Synapse formation between sensory neurons and L7 begins by 3 h after plating and is accompanied by a rapid accumulation of a novel PKC to sites of synaptic interaction. Reducing ApCAM expression specifically from the surface of L7 blocks presynaptic growth and initial synapse formation, target-induced increase of sensorin in sensory neuron cell bodies and the rapid accumulation of the novel PKC to sites of interaction. Selective blockade of the novel PKC activity in L7, but not in sensory neurons, with injection of a dominant negative construct that interferes with the novel PKC activity, produces the same actions as downregulating ApCAM; blockade of presynaptic growth and initial synapse formation, and the target-induced increase of sensorin in sensory neuron cell bodies. The results indicate that signals initiated by postsynaptic cell adhesion molecule ApCAM coupled with the activation of a novel PKC in the appropriate postsynaptic neuron produce the retrograde signals required for presynaptic growth associated with initial synapse formation, and the target-induced expression of a presynaptic neuropeptide critical for synapse maturation.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Proteína Quinasa C/metabolismo , Sinapsis/metabolismo , Análisis de Varianza , Animales , Aplysia/crecimiento & desarrollo , Aplysia/metabolismo , Células Cultivadas , Electrofisiología , Colorantes Fluorescentes , Ganglios de Invertebrados/metabolismo , Inmunohistoquímica , Microscopía Fluorescente , Neuronas/citología , Neuropéptidos/metabolismo , Transmisión Sináptica/fisiología
10.
J Neurosci ; 29(30): 9553-62, 2009 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-19641118

RESUMEN

Activity-dependent long-term synaptic plasticity requires gene expression and protein synthesis. Identifying essential genes and studying their transcriptional and translational regulation are key steps to understanding how synaptic changes become long lasting. Recently, the enzyme poly-(ADP-ribose) polymerase 1 (PARP-1) was shown to be necessary for long-term memory (LTM) in Aplysia. Since PARP-1 decondenses chromatin, we hypothesize that this enzyme regulates the expression of specific genes essential for long-term synaptic plasticity that underlies LTM. We cloned Aplysia PARP-1 (ApPARP-1) and determined that its expression in sensory neurons is necessary for serotonin (5-HT)-mediated long-term facilitation (LTF) of sensorimotor neuron synapses. PARP enzymatic activity is also required, since transient application of PARP inhibitors blocked LTF. Differential display and RNA analysis of ganglia dissected from intact animals exposed to 5-HT identified the ribosomal RNA genes as PARP-dependent effector genes. The increase in the expression of rRNAs is long lasting and dynamic. Pulse-labeling RNA studies showed a PARP-dependent increase in rRNAs but not in the total RNA 24 h after 5-HT treatment. Moreover, the expression of both the AprpL27a (Aplysia ribosomal protein L27a) and the ApE2N (Aplysia ubiquitin-conjugating enzyme E2N) mRNAs also increased after 5-HT. Thus, our results suggest that 5-HT, in part by regulating PARP-1 activity, alters the expression of transcripts required for the synthesis of new ribosomes necessary for LTF.


Asunto(s)
Potenciación a Largo Plazo/fisiología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Células Receptoras Sensoriales/fisiología , Serotonina/metabolismo , Animales , Aplysia , Secuencia de Bases , Benzamidas/administración & dosificación , Células Cultivadas , Inhibidores Enzimáticos/administración & dosificación , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Datos de Secuencia Molecular , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/enzimología , Neuronas Motoras/fisiología , Fenantrenos/administración & dosificación , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/genética , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/enzimología , Sinapsis/efectos de los fármacos , Sinapsis/enzimología , Sinapsis/fisiología , Factores de Tiempo , Enzimas Ubiquitina-Conjugadoras/metabolismo
11.
Neuron ; 43(3): 373-85, 2004 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-15294145

RESUMEN

In Aplysia, long-term facilitation (LTF) of sensory neuron synapses requires activation of both protein kinase A (PKA) and mitogen-activated protein kinase (MAPK). We find that 5-HT through activation of PKA regulates secretion of the sensory neuron-specific neuropeptide sensorin, which binds autoreceptors to activate MAPK. Anti-sensorin antibody blocked LTF and MAPK activation produced by 5-HT and LTF produced by medium containing sensorin that was secreted from sensory neurons after 5-HT treatment. A single application of 5-HT followed by a 2 hr incubation with sensorin produced protein synthesis-dependent LTF, growth of new presynaptic varicosities, and activation of MAPK and its translocation into sensory neuron nuclei. Inhibiting PKA during 5-HT applications and inhibiting receptor tyrosine kinase or MAPK during sensorin application blocked both LTF and MAPK activation and translocation. Thus, long-term synaptic plasticity is produced when stimuli activate kinases in a specific sequence by regulating the secretion and autocrine action of a neuropeptide.


Asunto(s)
Aplysia/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuropéptidos/metabolismo , Serotonina/farmacología , Secuencia de Aminoácidos/genética , Animales , Aplysia/enzimología , Comunicación Autocrina/efectos de los fármacos , Comunicación Autocrina/fisiología , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Datos de Secuencia Molecular , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/enzimología , Sinapsis/metabolismo
12.
J Neurosci ; 27(33): 8927-39, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17699674

RESUMEN

Long-term facilitation (LTF) of sensory neuron synapses in Aplysia is produced by either nonassociative or associative stimuli. Nonassociative LTF can be produced by five spaced applications of serotonin (5-HT) and requires a phosphoinosotide 3-kinase (PI3K)-dependent and rapamycin-sensitive increase in the local synthesis of the sensory neuron neuropeptide sensorin and a protein kinase A (PKA)-dependent increase in the secretion of the newly synthesized sensorin. We report here that associative LTF produced by a single pairing of a brief tetanus with one application of 5-HT requires a rapid protein kinase C (PKC)-dependent and rapamycin-sensitive increase in local sensorin synthesis. This rapid increase in sensorin synthesis does not require PI3K activity or the presence of the sensory neuron cell body but does require the presence of the motor neuron. The secretion of newly synthesized sensorin by 2 h after stimulation requires both PKA and PKC activities to produce associative LTF because incubation with exogenous anti-sensorin antibody or the kinase inhibitors after tetanus plus 5-HT blocked LTF. The secreted sensorin leads to phosphorylation and translocation of p42/44 mitogen-activated protein kinase (MAPK) into the nuclei of the sensory neurons. Thus, different stimuli activating different signaling pathways converge by regulating the synthesis and release of a neuropeptide to produce long-term synaptic plasticity.


Asunto(s)
Plasticidad Neuronal/fisiología , Neuronas Aferentes/metabolismo , Neuropéptidos/metabolismo , Proteína Quinasa C/fisiología , Sinapsis/fisiología , Análisis de Varianza , Animales , Aplysia , Células Cultivadas , Técnicas de Cocultivo/métodos , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Ganglios de Invertebrados , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Neuronas Motoras/fisiología , Neuronas Aferentes/efectos de los fármacos , Serotonina/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación
13.
J Neurosci ; 27(43): 11712-24, 2007 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-17959813

RESUMEN

Target-dependent increases in axon growth and varicosities accompany the formation of functional synapses between Aplysia sensory neurons and specific postsynaptic neurons (L7 and not L11). The enhanced growth is regulated in part by a target-dependent increase in the secretion of sensorin, the sensory neuron neuropeptide. We report here that protein kinase C (PKC) activity is required for synapse formation by sensory neurons with L7 and for the target-dependent increases in sensorin synthesis and secretion. Blocking PKC activity reversibly blocked synapse formation and axon growth of sensory neurons contacting L7, but did not affect axon growth of sensory neurons contacting L11 or axon growth of the postsynaptic targets. Blocking PKC activity also blocked the target-induced increase in sensorin synthesis and secretion. Sensorin then activates additional signaling pathways required for synapse maturation and synapse-associated growth. Exogenous anti-sensorin antibody blocked target-induced activation and translocation into sensory neuron nuclei of p42/44 mitogen-activated protein kinase (MAPK), attenuated synapse maturation, and curtailed growth of sensory neurons contacting L7, but not the growth of sensory neurons contacting L11. Inhibitors of MAPK or phosphoinositide 3-kinase also attenuated synapse maturation and curtailed growth and varicosity formation of sensory neurons contacting L7, but not growth of sensory neurons contacting L11. These results suggest that PKC activity regulated by specific cell-cell interactions initiates the formation of specific synapses and the subsequent synthesis and release of a neuropeptide to activate additional signaling pathways required for synapse maturation.


Asunto(s)
Proteína Quinasa C/fisiología , Sinapsis/enzimología , Animales , Aplysia , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ganglios de Invertebrados/efectos de los fármacos , Ganglios de Invertebrados/enzimología , Ganglios de Invertebrados/crecimiento & desarrollo , Proteína Quinasa C/antagonistas & inhibidores , Sinapsis/efectos de los fármacos
14.
J Neurosci ; 26(3): 1026-35, 2006 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-16421322

RESUMEN

Activation of several signaling pathways contributes to long-term synaptic plasticity, but how brief stimuli produce coordinated activation of these pathways is not understood. In Aplysia, the long-term facilitation (LTF) of sensory neuron synapses by 5-hydroxytryptamine (serotonin; 5-HT) requires the activation of several kinases, including mitogen-activated protein kinase (MAPK). The 5-HT-enhanced secretion of the sensory neuron-specific neuropeptide sensorin mediates the activation of MAPK. We find that stimulus-induced activation of two signaling pathways, phosphoinositide 3-kinase (PI3K) and type II protein kinase A (PKA), regulate sensorin secretion and responses. Treatment with 5-HT produces a rapid increase in sensorin synthesis, especially at varicosities, which precedes the secretion of sensorin. PI3K inhibitor and rapamycin block LTF and the rapid synthesis of sensorin at varicosities even in the absence of sensory neuron cell bodies. Secretion of the newly synthesized sensorin from the varicosities and activation of the autocrine responses of sensorin to produce LTF require type II PKA interaction with AKAPs (A-kinase anchoring proteins). Thus, long-term synaptic plasticity is produced when multiple signaling pathways that are important for regulating distinct cellular functions are activated in a specific sequence and recruit the secretion of a neuropeptide to activate additional critical pathways.


Asunto(s)
Aplysia/fisiología , Regulación de la Expresión Génica/fisiología , Potenciación a Largo Plazo/fisiología , Neuropéptidos/biosíntesis , Neuropéptidos/metabolismo , Transducción de Señal/fisiología , Animales , Células Cultivadas , Proteína Quinasa Tipo II Dependiente de AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Neuropéptidos/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Serotonina/farmacología , Transducción de Señal/efectos de los fármacos
15.
J Neurosci ; 26(19): 5204-14, 2006 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-16687512

RESUMEN

Targeting mRNAs to different functional domains within neurons is crucial to memory storage. In Aplysia sensory neurons, syntaxin mRNA accumulates at the axon hillock during long-term facilitation of sensory-motor neuron synapses produced by serotonin (5-HT). We find that the 3' untranslated region of Aplysia syntaxin mRNA has two targeting elements, the cytosolic polyadenylation element (CPE) and stem-loop double-stranded structures that appear to interact with mRNA-binding proteins CPEB and Staufen. Blocking the interaction between these targeting elements and their RNA-binding proteins abolished both accumulation at the axon hillock and long-term facilitation. CPEB, which we previously have shown to be upregulated after stimulation with 5-HT, is required for the relocalization of syntaxin mRNA to the axon hillock from the opposite pole in the cell body of the sensory neuron during long-term facilitation, whereas Staufen is required for maintaining the accumulation of the mRNA both at the axon hillock after the treatment with 5-HT and at the opposite pole in stable, unstimulated sensory neurons. Thus, the cooperative actions of the two mRNA-binding proteins serve to direct the distribution of an mRNA encoding a key synaptic protein.


Asunto(s)
Aplysia/fisiología , Potenciación a Largo Plazo/fisiología , Neuronas Aferentes/fisiología , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Células Cultivadas , Factores de Escisión y Poliadenilación de ARNm/metabolismo
16.
J Neurosci ; 26(24): 6439-49, 2006 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-16775131

RESUMEN

The activator protein-1 (AP1) transcription complex remains active for long periods after axotomy, but its activity diminishes during target contact. This raises the possibility that the function of this complex is regulated by the synaptic connections. Using Aplysia californica, we found that crushing peripheral nerves in vivo enhanced AP1 binding in the sensory neurons that lasted for weeks and then declined as regeneration was completed. The AP1 complex in Aplysia is a c-Jun homodimer. Its activation, after axotomy, is mediated by Aplysia c-Jun-N-terminal kinase (apJNK), which enters the nucleus of sensory neurons and phosphorylates c-Jun at Ser-73 (p73-c-Jun). Active AP1 in the sensory neurons did not mediate apoptosis and was not involved in the appearance of the long-term hyperexcitability that develops in these cells after axotomy, and blocking the activation of apJNK in vitro did not influence neurite outgrowth. In contrast, the levels of activated apJNK and p73-c-Jun declined markedly when sensory neurons formed synapses with motor neuron L7 in vitro. Furthermore, inhibiting the pathway accelerated synaptogenesis between sensory neurons and L7. These data suggest that positive and negative modulation of the JNK-c-Jun-AP1 pathway functions in alerting the nucleus to the loss and gain of synapses, respectively.


Asunto(s)
Axotomía , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neuronas Aferentes/fisiología , Sinapsis/fisiología , Factor de Transcripción AP-1/metabolismo , Animales , Antracenos/farmacología , Aplysia , Apoptosis/fisiología , Western Blotting/métodos , Células Cultivadas , Clonación Molecular/métodos , Ensayo de Cambio de Movilidad Electroforética/métodos , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Lateralidad Funcional/fisiología , Ganglios de Invertebrados/citología , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica/métodos , Etiquetado Corte-Fin in Situ/métodos , Microinyecciones/métodos , Neuronas Aferentes/efectos de los fármacos , Unión Proteica/fisiología , Serina/metabolismo , Sinapsis/efectos de los fármacos , Sales de Tetrazolio , Tiazoles , Factores de Tiempo
17.
Curr Biol ; 27(13): 1888-1899.e4, 2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28648820

RESUMEN

Generalization of fear responses to non-threatening stimuli is a feature of anxiety disorders. It has been challenging to target maladaptive generalized memories without affecting adaptive memories. Synapse-specific long-term plasticity underlying memory involves the targeting of plasticity-related proteins (PRPs) to activated synapses. If distinct tags and PRPs are used for different forms of plasticity, one could selectively remove distinct forms of memory. Using a stimulation paradigm in which associative long-term facilitation (LTF) occurs at one input and non-associative LTF at another input to the same postsynaptic neuron in an Aplysia sensorimotor preparation, we found that each form of LTF is reversed by inhibiting distinct isoforms of protein kinase M (PKM), putative PRPs, in the postsynaptic neuron. A dominant-negative (dn) atypical PKM selectively reversed associative LTF, while a dn classical PKM selectively reversed non-associative LTF. Although both PKMs are formed from calpain-mediated cleavage of protein kinase C (PKC) isoforms, each form of LTF is sensitive to a distinct dn calpain expressed in the postsynaptic neuron. Associative LTF is blocked by dn classical calpain, whereas non-associative LTF is blocked by dn small optic lobe (SOL) calpain. Interfering with a putative synaptic tag, the adaptor protein KIBRA, which protects the atypical PKM from degradation, selectively erases associative LTF. Thus, the activity of distinct PRPs and tags in a postsynaptic neuron contribute to the maintenance of different forms of synaptic plasticity at separate inputs, allowing for selective reversal of synaptic plasticity and providing a cellular basis for developing therapeutic strategies for selectively reversing maladaptive memories.


Asunto(s)
Aplysia/fisiología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Neuronas/fisiología , Animales , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo
18.
J Neurosci ; 22(5): 1831-9, 2002 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11880512

RESUMEN

Protein synthesis at distal synaptic sites is thought to play a critical role in long-term synaptic plasticity at preexisting connections. We tested whether protein synthesis in distal neuritic processes contributes to the formation of new synaptic connections by Aplysia neurons regenerating in cell culture after removing their cell bodies. Removal of either the sensory neuron (SN) or motor cell L7 cell body did not affect the formation of synaptic connections during the next 48--72 hr period. Increases in synaptic efficacy after removal of the SN cell body was accompanied by neurite growth and an increase in the number of SN varicosities contacting L7. The increases in synaptic efficacy and the number of SN varicosities were blocked by anisomycin, a protein synthesis inhibitor. The initial formation of synaptic connections was not affected by the absence of the L7 cell body. In the absence of cell bodies from both presynaptic and postsynaptic cells, synaptic efficacy increased for 48 hr and was blocked reversibly by anisomycin. These results support the idea that distal neuritic processes contain stable mRNAs and the macromolecular machinery for protein synthesis that are required for the formation of new synaptic connections.


Asunto(s)
Neuronas Motoras/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Neuronas Aferentes/fisiología , Regeneración/fisiología , Sinapsis/metabolismo , Animales , Anisomicina/farmacología , Aplysia , Axones/fisiología , Transporte Biológico/fisiología , Células Cultivadas , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Neuritas/metabolismo , Neuronas Aferentes/citología , Neuronas Aferentes/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Estabilidad del ARN , ARN Mensajero/metabolismo , Regeneración/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Factores de Tiempo
19.
J Neurosci ; 23(5): 1804-15, 2003 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-12629184

RESUMEN

Syntaxin has an important role in regulating vesicle docking and fusion essential for neurotransmitter release. Here, we demonstrate that the distribution of syntaxin mRNA in cell bodies of sensory neurons (SNs) of Aplysia maintained in cell culture is affected by synapse formation, synapse stabilization, and long-term facilitation (LTF) produced by 5-HT. The distribution of the mRNA in turn regulates expression and axonal transport of the protein. Syntaxin mRNA and protein accumulated at the axon hillock of SNs during the initial phase of synapse formation. Significant numbers of granules containing syntaxin were detected in the SN axon. When synaptic strength was stable, both mRNA and protein were targeted away from the axon hillock, and the number of syntaxin granules in the SN axon was reduced. Dramatic increases in mRNA and protein accumulation at the axon hillock and number of syntaxin granules in the SN axon were produced when cultures with stable connections were treated with 5-HT that evoked LTF. Anisomycin (protein synthesis inhibitor) or KT5720 (protein kinase A inhibitor) blocked LTF, accumulation of syntaxin mRNA and protein at the axon hillock, and the increase in syntaxin granules in SN axons. The results indicate that without significant effects on overall mRNA expression, both target interaction and 5-HT via activation of protein kinase A pathway regulate expression of syntaxin and its packaging for transport into axons by influencing the distribution of its mRNA in the SN cell body.


Asunto(s)
Proteínas de la Membrana/metabolismo , Plasticidad Neuronal/fisiología , Neuronas Aferentes/metabolismo , ARN Mensajero/metabolismo , Sinapsis/metabolismo , Animales , Aplysia , Transporte Axonal/fisiología , Axones/efectos de los fármacos , Axones/metabolismo , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Proteínas de la Membrana/genética , Plasticidad Neuronal/efectos de los fármacos , Neuronas Aferentes/citología , Neuronas Aferentes/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas/fisiología , Proteínas Qa-SNARE , Serotonina/farmacología
20.
J Neurosci ; 22(7): 2669-78, 2002 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-11923432

RESUMEN

Several factors regulate export of mRNAs from neuronal cell bodies. Using in situ hybridization and RT-PCR, we examined how target interaction influences the distribution of mRNAs expressed in sensory neurons (SNs) of Aplysia maintained in cell culture. Interaction with a synaptic target has two effects on the distribution of mRNA encoding an SN-specific peptide, sensorin: the target affects the accumulation of sensorin mRNA at the axon hillock and the stability of sensorin mRNA exported to distal sites. Synapse formation with motor neuron L7 results in the accumulation of high levels of sensorin mRNA in the axon hillock of the SN and in SN neurites contacting L7. SNs cultured alone or in contact with motor neuron L11, with which no synapses form, show a more uniform distribution of sensorin mRNA in the cytoplasm of the SN cell body, with little expression in neurites. Contact with L7 or L11 had little or no effect on the distribution of two other mRNAs in the cytoplasm of SN cell bodies. Sensorin mRNA exported to SN neurites after 1 d in culture is more stable when the SN contacts L7 compared with SN neurites that contact L11. After removal of the SN cell body, the amounts of sensorin mRNA already exported to the neurites are greater when neurites contact L7 compared with neurites in contact with L11. The results indicate that target interaction and synapse formation regulate both the accumulations of specific mRNAs destined for export and their stability at distant sites.


Asunto(s)
Neuronas Aferentes/metabolismo , Estabilidad del ARN/fisiología , ARN Mensajero/metabolismo , Potenciales de Acción/fisiología , Animales , Aplysia , Axones/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Hibridación in Situ , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Neuritas/metabolismo , Neuronas Aferentes/citología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA