Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(11): e2217422120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36888663

RESUMEN

Somatic mutations are highly enriched at transcription factor (TF) binding sites, with the strongest trend being observed for ultraviolet light (UV)-induced mutations in melanomas. One of the main mechanisms proposed for this hypermutation pattern is the inefficient repair of UV lesions within TF-binding sites, caused by competition between TFs bound to these lesions and the DNA repair proteins that must recognize the lesions to initiate repair. However, TF binding to UV-irradiated DNA is poorly characterized, and it is unclear whether TFs maintain specificity for their DNA sites after UV exposure. We developed UV-Bind, a high-throughput approach to investigate the impact of UV irradiation on protein-DNA binding specificity. We applied UV-Bind to ten TFs from eight structural families, and found that UV lesions significantly altered the DNA-binding preferences of all the TFs tested. The main effect was a decrease in binding specificity, but the precise effects and their magnitude differ across factors. Importantly, we found that despite the overall reduction in DNA-binding specificity in the presence of UV lesions, TFs can still compete with repair proteins for lesion recognition, in a manner consistent with their specificity for UV-irradiated DNA. In addition, for a subset of TFs, we identified a surprising but reproducible effect at certain nonconsensus DNA sequences, where UV irradiation leads to a high increase in the level of TF binding. These changes in DNA-binding specificity after UV irradiation, at both consensus and nonconsensus sites, have important implications for the regulatory and mutagenic roles of TFs in the cell.


Asunto(s)
Factores de Transcripción , Rayos Ultravioleta , Humanos , Factores de Transcripción/metabolismo , Sitios de Unión/genética , Unión Proteica/genética , ADN/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(30): e2308010120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459531

RESUMEN

Cellular eukaryotic replication initiation helicases are first loaded as head-to-head double hexamers on double-stranded (ds) DNA origins and then initiate S-phase DNA melting during licensed (once per cell cycle) replication. Merkel cell polyomavirus (MCV) large T (LT) helicase oncoprotein similarly binds and melts its own 98-bp origin but replicates multiple times in a single cell cycle. To examine the actions of this unlicensed viral helicase, we quantitated multimerization of MCV LT molecules as they assembled on MCV DNA origins using real-time single-molecule microscopy. MCV LT formed highly stable double hexamers having 17-fold longer mean lifetime (τ, >1,500 s) on DNA than single hexamers. Unexpectedly, partial MCV LT assembly without double-hexamer formation was sufficient to melt origin dsDNA as measured by RAD51, RPA70, or S1 nuclease cobinding. DNA melting also occurred with truncated MCV LT proteins lacking the helicase domain, but was lost from a protein without the multimerization domain that could bind only as a monomer to DNA. SV40 polyomavirus LT also multimerized to the MCV origin without forming a functional hexamer but still melted origin DNA. MCV origin melting did not require ATP hydrolysis and occurred for both MCV and SV40 LT proteins using the nonhydrolyzable ATP analog, adenylyl-imidodiphosphate (AMP-PNP). LT double hexamers formed in AMP-PNP, and melted DNA, consistent with direct LT hexamer assembly around single-stranded (ss) DNA without the energy-dependent dsDNA-to-ssDNA melting and remodeling steps used by cellular helicases. These results indicate that LT multimerization rather than helicase activity is required for origin DNA melting during unlicensed virus replication.


Asunto(s)
Antígenos Transformadores de Poliomavirus , Virus 40 de los Simios , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Virus 40 de los Simios/genética , Virus 40 de los Simios/metabolismo , Desnaturalización de Ácido Nucleico , Adenilil Imidodifosfato , Replicación del ADN , ADN/genética , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Cadena Simple , ADN Viral/genética , ADN Viral/metabolismo
3.
Nucleic Acids Res ; 51(10): 4881-4898, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-36971122

RESUMEN

UV-damaged DNA-binding protein (UV-DDB) is a heterodimeric protein, consisting of DDB1 and DDB2 subunits, that works to recognize DNA lesions induced by UV damage during global genome nucleotide excision repair (GG-NER). Our laboratory previously discovered a non-canonical role for UV-DDB in the processing of 8-oxoG, by stimulating 8-oxoG glycosylase, OGG1, activity 3-fold, MUTYH activity 4-5-fold, and APE1 (apurinic/apyrimidinic endonuclease 1) activity 8-fold. 5-hydroxymethyl-deoxyuridine (5-hmdU) is an important oxidation product of thymidine which is removed by single-strand selective monofunctional DNA glycosylase (SMUG1). Biochemical experiments with purified proteins indicated that UV-DDB stimulates the excision activity of SMUG1 on several substrates by 4-5-fold. Electrophoretic mobility shift assays indicated that UV-DDB displaced SMUG1 from abasic site products. Single-molecule analysis revealed that UV-DDB decreases the half-life of SMUG1 on DNA by ∼8-fold. Immunofluorescence experiments demonstrated that cellular treatment with 5-hmdU (5 µM for 15 min), which is incorporated into DNA during replication, produces discrete foci of DDB2-mCherry, which co-localize with SMUG1-GFP. Proximity ligation assays supported a transient interaction between SMUG1 and DDB2 in cells. Poly(ADP)-ribose accumulated after 5-hmdU treatment, which was abrogated with SMUG1 and DDB2 knockdown. These data support a novel role for UV-DDB in the processing of the oxidized base, 5-hmdU.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN , Proteínas de Unión al ADN/metabolismo , Reparación del ADN , ADN/química , Timidina , Rayos Ultravioleta
4.
Nucleic Acids Res ; 51(7): e39, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36861323

RESUMEN

Single-molecule characterization of protein-DNA dynamics provides unprecedented mechanistic details about numerous nuclear processes. Here, we describe a new method that rapidly generates single-molecule information with fluorescently tagged proteins isolated from nuclear extracts of human cells. We demonstrated the wide applicability of this novel technique on undamaged DNA and three forms of DNA damage using seven native DNA repair proteins and two structural variants, including: poly(ADP-ribose) polymerase (PARP1), heterodimeric ultraviolet-damaged DNA-binding protein (UV-DDB), and 8-oxoguanine glycosylase 1 (OGG1). We found that PARP1 binding to DNA nicks is altered by tension, and that UV-DDB did not act as an obligate heterodimer of DDB1 and DDB2 on UV-irradiated DNA. UV-DDB bound to UV photoproducts with an average lifetime of 39 seconds (corrected for photobleaching, τc), whereas binding lifetimes to 8-oxoG adducts were < 1 second. Catalytically inactive OGG1 variant K249Q bound oxidative damage 23-fold longer than WT OGG1, at 47 and 2.0 s, respectively. By measuring three fluorescent colors simultaneously, we also characterized the assembly and disassembly kinetics of UV-DDB and OGG1 complexes on DNA. Hence, the SMADNE technique represents a novel, scalable, and universal method to obtain single-molecule mechanistic insights into key protein-DNA interactions in an environment containing physiologically-relevant nuclear proteins.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN , Humanos , Proteínas de Unión al ADN/genética , Daño del ADN , ADN/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Rayos Ultravioleta
5.
Nucleic Acids Res ; 49(14): 8177-8188, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34232996

RESUMEN

The oxidative base damage, 8-oxo-7,8-dihydroguanine (8-oxoG) is a highly mutagenic lesion because replicative DNA polymerases insert adenine (A) opposite 8-oxoG. In mammalian cells, the removal of A incorporated across from 8-oxoG is mediated by the glycosylase MUTYH during base excision repair (BER). After A excision, MUTYH binds avidly to the abasic site and is thus product inhibited. We have previously reported that UV-DDB plays a non-canonical role in BER during the removal of 8-oxoG by 8-oxoG glycosylase, OGG1 and presented preliminary data that UV-DDB can also increase MUTYH activity. In this present study we examine the mechanism of how UV-DDB stimulates MUTYH. Bulk kinetic assays show that UV-DDB can stimulate the turnover rate of MUTYH excision of A across from 8-oxoG by 4-5-fold. Electrophoretic mobility shift assays and atomic force microscopy suggest transient complex formation between MUTYH and UV-DDB, which displaces MUTYH from abasic sites. Using single molecule fluorescence analysis of MUTYH bound to abasic sites, we show that UV-DDB interacts directly with MUTYH and increases the mobility and dissociation rate of MUTYH. UV-DDB decreases MUTYH half-life on abasic sites in DNA from 8800 to 590 seconds. Together these data suggest that UV-DDB facilitates productive turnover of MUTYH at abasic sites during 8-oxoG:A repair.


Asunto(s)
Daño del ADN/efectos de los fármacos , ADN Glicosilasas/genética , Guanina/análogos & derivados , Estrés Oxidativo/efectos de los fármacos , Adenina/química , Animales , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Replicación del ADN/efectos de los fármacos , Replicación del ADN/efectos de la radiación , Guanina/química , Guanina/farmacología , Guanina/toxicidad , Hidrocarburos Clorados/farmacología , Hidrocarburos Clorados/toxicidad , Ratones , Estrés Oxidativo/efectos de la radiación , Imagen Individual de Molécula
6.
Cell Mol Life Sci ; 77(1): 35-59, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31722068

RESUMEN

DNA polymerases are vital for the synthesis of new DNA strands. Since the discovery of DNA polymerase I in Escherichia coli, a diverse library of mammalian DNA polymerases involved in DNA replication, DNA repair, antibody generation, and cell checkpoint signaling has emerged. While the unique functions of these DNA polymerases are differentiated by their association with accessory factors and/or the presence of distinctive catalytic domains, atomic resolution structures of DNA polymerases in complex with their DNA substrates have revealed mechanistic subtleties that contribute to their specialization. In this review, the structure and function of all 15 mammalian DNA polymerases from families B, Y, X, and A will be reviewed and discussed with special emphasis on the insights gleaned from recently published atomic resolution structures.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Animales , Dominio Catalítico , Reparación del ADN , Replicación del ADN , Humanos , Modelos Moleculares , Conformación Proteica
7.
Nucleic Acids Res ; 45(11): 6934-6944, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28449123

RESUMEN

The oxidized nucleotide, 8-oxo-7,8-dihydro-2΄-deoxyguanosine (8-oxoG), is one of the most abundant DNA lesions. 8-oxoG plays a major role in tumorigenesis and human disease. Biological consequences of 8-oxoG are mediated in part by its insertion into the genome, making it essential to understand how DNA polymerases handle 8-oxoG. Insertion of 8-oxoG is mutagenic when opposite adenine but not when opposite cytosine. However, either result leads to DNA damage at the primer terminus (3΄-end) during the succeeding insertion event. Extension from DNA damage at primer termini remains poorly understood. Using kinetics and time-lapse crystallography, we evaluated how a model DNA polymerase, human polymerase ß, accommodates 8-oxoG at the primer terminus opposite cytosine and adenine. Notably, extension from the mutagenic base pair is favored over the non-mutagenic base pair. When 8-oxoG is at the primer terminus opposite cytosine, DNA centric changes lead to a clash between O8 of 8-oxoG and the phosphate backbone. Changes in the extension reaction resulting from the altered active site provide evidence for a stabilizing interaction between Arg254 and Asp256 that serves an important role during DNA synthesis reactions. These results provide novel insights into the impact of damage at the primer terminus on genomic stability and DNA synthesis.


Asunto(s)
ADN Polimerasa beta/química , Desoxiguanosina/análogos & derivados , 8-Hidroxi-2'-Desoxicoguanosina , Biocatálisis , Calcio/química , Dominio Catalítico , Cristalografía por Rayos X , ADN Polimerasa beta/aislamiento & purificación , Desoxiguanosina/química , Humanos , Cinética , Modelos Moleculares , Oxidación-Reducción , Polimerizacion , Unión Proteica , Conformación Proteica en Hélice alfa
8.
Chem Res Toxicol ; 30(11): 1993-2001, 2017 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-28862449

RESUMEN

Members of the nucleoside analogue class of cancer therapeutics compete with canonical nucleotides to disrupt numerous cellular processes, including nucleotide homeostasis, DNA and RNA synthesis, and nucleotide metabolism. Nucleoside analogues are triphosphorylated and subsequently inserted into genomic DNA, contributing to the efficacy of therapeutic nucleosides in multiple ways. In some cases, the altered base acts as a mutagen, altering the DNA sequence to promote cellular death; in others, insertion of the altered nucleotide triggers DNA repair pathways, which produce lethal levels of cytotoxic intermediates such as single and double stranded DNA breaks. As a prerequisite to many of these biological outcomes, the modified nucleotide must be accommodated in the DNA polymerase active site during nucleotide insertion. Currently, the molecular contacts that mediate DNA polymerase insertion of modified nucleotides remain unknown for multiple therapeutic compounds, despite decades of clinical use. To determine how modified bases are inserted into duplex DNA, we used mammalian DNA polymerase ß (pol ß) to visualize the structural conformations of four therapeutically relevant modified nucleotides, 6-thio-2'-deoxyguanosine-5'-triphosphate (6-TdGTP), 5-fluoro-2'-deoxyuridine-5'-triphosphate (5-FdUTP), 5-formyl-deoxycytosine-5'-triphosphate (5-FodCTP), and 5-formyl-deoxyuridine-5'-triphosphate (5-FodUTP). Together, the structures reveal a pattern in which the modified nucleotides utilize Watson-Crick base pairing interactions similar to that of unmodified nucleotides. The nucleotide modifications were consistently positioned in the major groove of duplex DNA, accommodated by an open cavity in pol ß. These results provide novel information for the rational design of new therapeutic nucleoside analogues and a greater understanding of how modified nucleotides are tolerated by polymerases.


Asunto(s)
ADN Polimerasa beta/química , ADN/química , Nucleótidos de Desoxicitosina/química , Nucleótidos de Desoxiuracil/química , Guanosina Trifosfato/análogos & derivados , Emparejamiento Base , Sitios de Unión , Cristalografía por Rayos X , ADN/metabolismo , ADN Polimerasa beta/metabolismo , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxiuracil/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Conformación Molecular , Conformación de Ácido Nucleico
9.
DNA Repair (Amst) ; 134: 103625, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237481

RESUMEN

By observing one molecule at a time, single-molecule studies can offer detailed insights about biomolecular processes including on rates, off rates, and diffusivity of molecules on strands of DNA. A recent technological advance (Single-molecule Analysis of DNA-binding proteins from Nuclear Extracts, SMADNE) has lowered the barrier to entry for single-molecule studies, and single-molecule dynamics can now be determined directly out of nuclear extracts, providing information in an intermediate environment between purified proteins in isolation and the heterogeneity of a nucleus. To compare and contrast the single-molecule DNA binding dynamics in nuclear extracts versus purified proteins, combined optical tweezers and fluorescence microscopy experiments were performed with purified GFP-tagged 8-oxoguanine glycosylase 1 (OGG1), purified GFP-OGG1 spiked into nuclear extracts, and nuclear extracts from human cells overexpressing GFP-OGG1. We observed differences in undamaged DNA binding during DNA damage search in each of the three conditions. Purified GFP-OGG1 engaged undamaged DNA for a weighted average lifetime of 5.7 s and 21% of these events underwent DNA diffusion after binding. However, unlike other glycosylases studied by SMADNE, OGG1 does not bind non-damaged DNA efficiently in nuclear extracts. In contrast, GFP-OGG1 binding dynamics on DNA substrates containing oxidative damage were relatively similar in all three conditions, with the weighted average binding lifetimes varying from 2.2 s in nuclear extracts to 7.8 s with purified GFP-OGG1 in isolation. Finally, we compared the purified protein and nuclear extract approaches for a catalytically dead OGG1 variant (GFP-OGG1-K249Q). This variant greatly increased the binding lifetime for oxidative DNA damage, with the weighted average lifetime for GFP-OGG1-249Q in nuclear extracts at 15.4 s vs 10.7 s for the purified protein. SMADNE will provide a new window of observation into the behavior of nucleic acid binding proteins only accessible by biophysicists trained in protein purification and protein labeling.


Asunto(s)
ADN Glicosilasas , Reparación del ADN , Guanina , Humanos , ADN , Daño del ADN , ADN Glicosilasas/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo
10.
bioRxiv ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38405734

RESUMEN

Templated DNA repair that occurs during homologous recombination and replication stress relies on RAD51. RAD51 activity is positively regulated by BRCA2 and the RAD51 paralogs. The Shu complex is a RAD51 paralog-containing complex consisting of SWSAP1 and SWS1. We demonstrate that SWSAP1-SWS1 binds RAD51, maintains RAD51 filament stability, and enables strand exchange. Using single molecule confocal fluorescence microscopy combined with optical tweezers, we show that SWSAP1-SWS1 decorates RAD51 filaments proficient for homologous recombination. We also find SWSAP1-SWS1 enhances RPA diffusion on ssDNA. Importantly, we show human sgSWSAP1 and sgSWS1 knockout cells are sensitive to pharmacological inhibition of PARP and APE1. Lastly, we identify cancer variants in SWSAP1 that alter SWS1 complex formation. Together, we show that SWSAP1-SWS1 stimulates RAD51-dependent high-fidelity repair and may be an important new cancer therapeutic target.

11.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961208

RESUMEN

By observing one molecule at a time, single-molecule studies can offer detailed insights about biomolecular processes including on rates, off rates, and diffusivity of molecules on strands of DNA. A recent technological advance (Single-molecule Analysis of DNA-binding proteins from Nuclear Extracts, SMADNE) has lowered the barrier to entry for single-molecule studies, and single-molecule dynamics can now be determined directly out of nuclear extracts, providing information in an intermediate environment between purified proteins in isolation and the heterogeneity of a nucleus. To compare and contrast the single-molecule DNA binding dynamics in nuclear extracts versus purified proteins, combined optical tweezers and fluorescence microscopy experiments were performed with purified GFP-tagged 8-oxoguanine glycosylase 1 (OGG1), purified GFP-OGG1 spiked into nuclear extracts, and nuclear extracts from human cells overexpressing GFP-OGG1. We observed differences in undamaged DNA binding during DNA damage search in each of the three conditions. Purified GFP-OGG1 engaged undamaged DNA for a weighted average lifetime of 5.7 s and 21% of these events underwent DNA diffusion after binding. However, unlike other glycosylases studied by SMADNE, OGG1 does not bind non-damaged DNA efficiently in nuclear extracts. In contrast, GFP-OGG1 binding dynamics on DNA substrates containing oxidative damage were relatively similar in all three conditions, with the weighted average binding lifetimes varying from 2.2 s in nuclear extracts to 7.8 s with purified GFP-OGG1 in isolation. Finally, we compared the purified protein and nuclear extract approaches for a catalytically dead OGG1 variant (GFP-OGG1-K249Q). This variant greatly increased the binding lifetime for oxidative DNA damage, with the weighted average lifetime for GFP-OGG1-249Q in nuclear extracts at 15.4 s vs 10.7 s for the purified protein. SMADNE will provide a new window of observation into the behavior of nucleic acid binding proteins only accessible by biophysicists trained in protein purification and protein labeling.

12.
bioRxiv ; 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37873231

RESUMEN

DNA methylation plays a key role in epigenetics, with 60-80% of CpG sites containing 5-methylcytosine. Base excision repair (BER) is suggested to be the main pathway involved in active DNA demethylation. 5-formylctyosine (5fC), an oxidized moiety of methylated cytosine, is recognized and removed by thymine DNA glycosylase (TDG) to generate an abasic site. TDG binds avidly to abasic sites and is product inhibited. Using single molecule fluorescence experiments, we saw TDG interact with DNA containing 5fC specifically and non-specifically with lifetimes of 72.9 and 7.5 seconds, respectively. These results indicate that TDG cleaves the 5fC and stays bound for an extended time at the generated abasic site. Mean squared displacement analysis and a two color TDG experiment indicate that TDG exhibits multiple modes of linear diffusion, including hopping and sliding, in search of a lesion. The catalytically crippled variants, N140A and R275A/L, have a reduced binding lifetime compared to wild type and Mean Squared Displacement (MSD) analysis indicates that R275L/A moves on the DNA with a faster diffusivity. These results indicate that mutating R275, but not N140 interferes with damage recognition by TDG. Our findings give insight into how TDG searches for its lesions in long stretches of undamaged DNA.

13.
Front Mol Biosci ; 8: 772877, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805281

RESUMEN

DNA is under constant threat of damage from a variety of chemical and physical insults, such as ultraviolet rays produced by sunlight and reactive oxygen species produced during respiration or inflammation. Because damaged DNA, if not repaired, can lead to mutations or cell death, multiple DNA repair pathways have evolved to maintain genome stability. Two repair pathways, nucleotide excision repair (NER) and base excision repair (BER), must sift through large segments of nondamaged nucleotides to detect and remove rare base modifications. Many BER and NER proteins share a common base-flipping mechanism for the detection of modified bases. However, the exact mechanisms by which these repair proteins detect their damaged substrates in the context of cellular chromatin remains unclear. The latest generation of single-molecule techniques, including the DNA tightrope assay, atomic force microscopy, and real-time imaging in cells, now allows for nearly direct visualization of the damage search and detection processes. This review describes several mechanistic commonalities for damage detection that were discovered with these techniques, including a combination of 3-dimensional and linear diffusion for surveying damaged sites within long stretches of DNA. We also discuss important findings that DNA repair proteins within and between pathways cooperate to detect damage. Finally, future technical developments and single-molecule studies are described which will contribute to the growing mechanistic understanding of DNA damage detection.

14.
Elife ; 92020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32501800

RESUMEN

Telomerase extends telomere sequences at chromosomal ends to protect genomic DNA. During this process it must select the correct nucleotide from a pool of nucleotides with various sugars and base pairing properties, which is critically important for the proper capping of telomeric sequences by shelterin. Unfortunately, how telomerase selects correct nucleotides is unknown. Here, we determined structures of Tribolium castaneum telomerase reverse transcriptase (TERT) throughout its catalytic cycle and mapped the active site residues responsible for nucleoside selection, metal coordination, triphosphate binding, and RNA template stabilization. We found that TERT inserts a mismatch or ribonucleotide ~1 in 10,000 and ~1 in 14,000 insertion events, respectively. At biological ribonucleotide concentrations, these rates translate to ~40 ribonucleotides inserted per 10 kilobases. Human telomerase assays determined a conserved tyrosine steric gate regulates ribonucleotide insertion into telomeres. Cumulatively, our work provides insight into how telomerase selects the proper nucleotide to maintain telomere integrity.


Asunto(s)
ADN/metabolismo , Nucleótidos/metabolismo , Telomerasa/metabolismo , Animales , Emparejamiento Base/genética , Dominio Catalítico , ADN/química , ADN/genética , Humanos , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Modelos Moleculares , Nucleótidos/química , Nucleótidos/genética , Unión Proteica , Telomerasa/química , Telomerasa/genética , Tribolium/enzimología , Tribolium/genética , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
15.
Toxicol Sci ; 170(1): 57-68, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30903181

RESUMEN

Acetaminophen (APAP) overdose is the most common cause of hepatotoxicity and acute liver failure in the United States and many western countries. However, the only clinically approved antidote, N-acetylcysteine, has a limited therapeutic window. 4-Methylpyrazole (4MP) is an antidote for methanol and ethylene glycol poisoning, and we have recently shown that cotreatment of 4MP with APAP effectively prevents toxicity by inhibiting Cyp2E1. To evaluate if 4MP can be used therapeutically, C57BL/6J mice were treated with 300 mg/kg APAP followed by 50 mg/kg 4MP 90 min later (after the metabolism phase). In these experiments, 4MP significantly attenuated liver injury at 3, 6, and 24 h after APAP as shown by 80%-90% reduction in plasma alanine aminotransferase activities and reduced areas of necrosis. 4MP prevented c-Jun c-Jun N-terminal kinase (JNK) activation and its mitochondrial translocation, and reduced mitochondrial oxidant stress and nuclear DNA fragmentation. 4MP also prevented JNK activation in other liver injury models. Molecular docking experiments showed that 4MP can bind to the ATP binding site of JNK. These data suggest that treatment with 4MP after the metabolism phase effectively prevents APAP-induced liver injury in the clinically relevant mouse model in vivo mainly through the inhibition of JNK activation. 4MP, a drug approved for human use, is as effective as N-acetylcysteine or can be even more effective in cases of severe overdoses with prolonged metabolism (600 mg/kg). 4MP acts on alternative therapeutic targets and thus may be a novel approach to treatment of APAP overdose in patients that complements N-acetylcysteine.


Asunto(s)
Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Fomepizol/administración & dosificación , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/administración & dosificación , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Fomepizol/uso terapéutico , Masculino , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/uso terapéutico , Tiempo de Tratamiento
16.
Front Biosci (Landmark Ed) ; 22(9): 1493-1522, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28199214

RESUMEN

Reactive oxygen species continuously assault the structure of DNA resulting in oxidation and fragmentation of the nucleobases. Both oxidative DNA damage itself and its repair mediate the progression of many prevalent human maladies. The major pathway tasked with removal of oxidative DNA damage, and hence maintaining genomic integrity, is base excision repair (BER). The aphorism that structure often dictates function has proven true, as numerous recent structural biology studies have aided in clarifying the molecular mechanisms used by key BER enzymes during the repair of damaged DNA. This review focuses on the mechanistic details of the individual BER enzymes and the association of these enzymes during the development and progression of human diseases, including cancer and neurological diseases. Expanding on these structural and biochemical studies to further clarify still elusive BER mechanisms, and focusing our efforts toward gaining an improved appreciation of how these enzymes form co-complexes to facilitate DNA repair is a crucial next step toward understanding how BER contributes to human maladies and how it can be manipulated to alter patient outcomes.


Asunto(s)
Daño del ADN , Reparación del ADN , Animales , ADN/química , ADN/metabolismo , ADN Glicosilasas/química , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , ADN Polimerasa beta/química , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Técnicas de Inactivación de Genes , Humanos , Ratones , Modelos Moleculares , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
17.
Cell Death Discov ; 3: 17065, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29367883

RESUMEN

Valosin-containing protein (VCP), together with several partner proteins, extracts ubiquitinated client proteins from E3 ligase complex and facilitates their degradation through ubiquitin-proteasome system. Therefore, it plays an important role in regulating protein quality control and various cellular pathways. Recent studies also identified VCP as a lineage-specific essential gene in ovarian cancer. An orally bioavailable VCP inhibitor, CB-5083, is currently in Phase I clinical trials because it shows therapeutic effects in multiple tumor xenograft models. However, the mechanism of resistance to CB-5083 is unknown. Here, we characterized molecular mechanism of resistance to CB-5083. Using incremental exposure to CB-5083, we established CB-5083-resistant ovarian cancer cells that showed five- to six-fold resistance in vitro compared with parental cells. Genomic and complementary DNA sequencing of the VCP coding region revealed a pattern of co-selected mutations: (1) missense mutations at codon 470 in one copy resulting in increased ATPase activity and (2) nonsense or frameshift mutations at codon 606 or codon 616 in another copy causing the loss of allele-specific expression. Unbiased molecular docking studies showed codon 470 as a putative binding site for CB-5083. Furthermore, the analysis of somatic mutations in cancer genomes from the Cancer Genome Atlas (TCGA) indicated that codon 616 contains hotspot mutations in VCP. Thus, identification of these mutations associated with in vitro resistance to VCP inhibitors may be useful as potential theranostic markers while screening for patients to enroll in clinical trials. VCP has emerged as a viable therapeutic target for several cancer types, and therefore targeting such hyperactive VCP mutants should aid in improving the therapeutic outcome in cancer patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA