Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(5): E567-E576, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477664

RESUMEN

Signaling through prostaglandin E2 EP3 receptor (EP3) actively contributes to the ß-cell dysfunction of type 2 diabetes (T2D). In T2D models, full-body EP3 knockout mice have a significantly worse metabolic phenotype than wild-type controls due to hyperphagia and severe insulin resistance resulting from loss of EP3 in extra-pancreatic tissues, masking any potential beneficial effects of EP3 loss in the ß cell. We hypothesized ß-cell-specific EP3 knockout (EP3 ßKO) mice would be protected from high-fat diet (HFD)-induced glucose intolerance, phenocopying mice lacking the EP3 effector, Gαz, which is much more limited in its tissue distribution. When fed a HFD for 16 wk, though, EP3 ßKO mice were partially, but not fully, protected from glucose intolerance. In addition, exendin-4, an analog of the incretin hormone, glucagon-like peptide 1, more strongly potentiated glucose-stimulated insulin secretion in islets from both control diet- and HFD-fed EP3 ßKO mice as compared with wild-type controls, with no effect of ß-cell-specific EP3 loss on islet insulin content or markers of replication and survival. However, after 26 wk of diet feeding, islets from both control diet- and HFD-fed EP3 ßKO mice secreted significantly less insulin as a percent of content in response to stimulatory glucose, with or without exendin-4, with elevated total insulin content unrelated to markers of ß-cell replication and survival, revealing severe ß-cell dysfunction. Our results suggest that EP3 serves a critical role in temporally regulating ß-cell function along the progression to T2D and that there exist Gαz-independent mechanisms behind its effects.NEW & NOTEWORTHY The EP3 receptor is a strong inhibitor of ß-cell function and replication, suggesting it as a potential therapeutic target for the disease. Yet, EP3 has protective roles in extrapancreatic tissues. To address this, we designed ß-cell-specific EP3 knockout mice and subjected them to high-fat diet feeding to induce glucose intolerance. The negative metabolic phenotype of full-body knockout mice was ablated, and EP3 loss improved glucose tolerance, with converse effects on islet insulin secretion and content.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Células Secretoras de Insulina , Animales , Ratones , Secreción de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Exenatida/farmacología , Intolerancia a la Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidad/metabolismo , Glucosa/metabolismo , Ratones Noqueados , Prostaglandinas/metabolismo , Prostaglandinas/farmacología
2.
J Biol Chem ; 296: 100056, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33172888

RESUMEN

The inhibitory G protein alpha-subunit (Gαz) is an important modulator of beta-cell function. Full-body Gαz-null mice are protected from hyperglycemia and glucose intolerance after long-term high-fat diet (HFD) feeding. In this study, at a time point in the feeding regimen where WT mice are only mildly glucose intolerant, transcriptomics analyses reveal islets from HFD-fed Gαz KO mice have a dramatically altered gene expression pattern as compared with WT HFD-fed mice, with entire gene pathways not only being more strongly upregulated or downregulated versus control-diet fed groups but actually reversed in direction. Genes involved in the "pancreatic secretion" pathway are the most strongly differentially regulated: a finding that correlates with enhanced islet insulin secretion and decreased glucagon secretion at the study end. The protection of Gαz-null mice from HFD-induced diabetes is beta-cell autonomous, as beta cell-specific Gαz-null mice phenocopy the full-body KOs. The glucose-stimulated and incretin-potentiated insulin secretion response of islets from HFD-fed beta cell-specific Gαz-null mice is significantly improved as compared with islets from HFD-fed WT controls, which, along with no impact of Gαz loss or HFD feeding on beta-cell proliferation or surrogates of beta-cell mass, supports a secretion-specific mechanism. Gαz is coupled to the prostaglandin EP3 receptor in pancreatic beta cells. We confirm the EP3γ splice variant has both constitutive and agonist-sensitive activity to inhibit cAMP production and downstream beta-cell function, with both activities being dependent on the presence of beta-cell Gαz.


Asunto(s)
Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Células Secretoras de Insulina/patología , Obesidad/complicaciones , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/etiología , Modelos Animales de Enfermedad , Subunidades alfa de la Proteína de Unión al GTP/genética , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
3.
Am J Physiol Endocrinol Metab ; 321(4): E479-E489, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34229444

RESUMEN

When homozygous for the LeptinOb mutation (Ob), Black-and-Tan Brachyury (BTBR) mice become morbidly obese and severely insulin resistant, and by 10 wk of age, frankly diabetic. Previous work has shown prostaglandin EP3 receptor (EP3) expression and activity is upregulated in islets from BTBR-Ob mice as compared with lean controls, actively contributing to their ß-cell dysfunction. In this work, we aimed to test the impact of ß-cell-specific EP3 loss on the BTBR-Ob phenotype by crossing Ptger3 floxed mice with the rat insulin promoter (RIP)-CreHerr driver strain. Instead, germline recombination of the floxed allele in the founder mouse-an event whose prevalence we identified as directly associated with underlying insulin resistance of the background strain-generated a full-body knockout. Full-body EP3 loss provided no diabetes protection to BTBR-Ob mice but, unexpectedly, significantly worsened BTBR-lean insulin resistance and glucose tolerance. This in vivo phenotype was not associated with changes in ß-cell fractional area or markers of ß-cell replication ex vivo. Instead, EP3-null BTBR-lean islets had essentially uncontrolled insulin hypersecretion. The selective upregulation of constitutively active EP3 splice variants in islets from young, lean BTBR mice as compared with C57BL/6J, where no phenotype of EP3 loss has been observed, provides a potential explanation for the hypersecretion phenotype. In support of this, high islet EP3 expression in Balb/c females versus Balb/c males was fully consistent with their sexually dimorphic metabolic phenotype after loss of EP3-coupled Gαz protein. Taken together, our findings provide a new dimension to the understanding of EP3 as a critical brake on insulin secretion.NEW & NOTEWORTHY Islet prostaglandin EP3 receptor (EP3) signaling is well known as upregulated in the pathophysiological conditions of type 2 diabetes, contributing to ß-cell dysfunction. Unexpected findings in mouse models of non-obese insulin sensitivity and resistance provide a new dimension to our understanding of EP3 as a key modulator of insulin secretion. A previously unknown relationship between mouse insulin resistance and the penetrance of rat insulin promoter-driven germline floxed allele recombination is critical to consider when creating ß-cell-specific knockouts.


Asunto(s)
Glucemia/metabolismo , Resistencia a la Insulina , Secreción de Insulina , Células Secretoras de Insulina/patología , Insulina/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E/fisiología , Animales , Femenino , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas , Ratas
4.
J Biol Chem ; 293(47): 18086-18098, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30228187

RESUMEN

Secreted proteins are important metabolic regulators in both healthy and disease states. Here, we sought to investigate the mechanism by which the secreted protein complement 1q-like-3 (C1ql3) regulates insulin secretion from pancreatic ß-cells, a key process affecting whole-body glucose metabolism. We found that C1ql3 predominantly inhibits exendin-4- and cAMP-stimulated insulin secretion from mouse and human islets. However, to a lesser extent, C1ql3 also reduced insulin secretion in response to KCl, the potassium channel blocker tolbutamide, and high glucose. Strikingly, C1ql3 did not affect insulin secretion stimulated by fatty acids, amino acids, or mitochondrial metabolites, either at low or submaximal glucose concentrations. Additionally, C1ql3 inhibited glucose-stimulated cAMP levels, and insulin secretion stimulated by exchange protein directly activated by cAMP-2 and protein kinase A. These results suggest that C1ql3 inhibits insulin secretion primarily by regulating cAMP signaling. The cell adhesion G protein-coupled receptor, brain angiogenesis inhibitor-3 (BAI3), is a C1ql3 receptor and is expressed in ß-cells and in mouse and human islets, but its function in ß-cells remained unknown. We found that siRNA-mediated Bai3 knockdown in INS1(832/13) cells increased glucose-stimulated insulin secretion. Furthermore, incubating the soluble C1ql3-binding fragment of the BAI3 protein completely blocked the inhibitory effects of C1ql3 on insulin secretion in response to cAMP. This suggests that BAI3 mediates the inhibitory effects of C1ql3 on insulin secretion from pancreatic ß-cells. These findings demonstrate a novel regulatory mechanism by which C1ql3/BAI3 signaling causes an impairment of insulin secretion from ß-cells, possibly contributing to the progression of type 2 diabetes in obesity.


Asunto(s)
Proteínas del Sistema Complemento/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Adipoquinas , Animales , Línea Celular , Complemento C1q , Proteínas del Sistema Complemento/genética , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Humanos , Secreción de Insulina , Proteínas del Tejido Nervioso/genética , Ratas
5.
J Physiol ; 596(4): 623-645, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29266268

RESUMEN

KEY POINTS: We recently found that feeding healthy mice a diet with reduced levels of branched-chain amino acids (BCAAs), which are associated with insulin resistance in both humans and rodents, modestly improves glucose tolerance and slows fat mass gain. In the present study, we show that a reduced BCAA diet promotes rapid fat mass loss without calorie restriction in obese mice. Selective reduction of dietary BCAAs also restores glucose tolerance and insulin sensitivity to obese mice, even as they continue to consume a high-fat, high-sugar diet. A low BCAA diet transiently induces FGF21 (fibroblast growth factor 21) and increases energy expenditure. We suggest that dietary protein quality (i.e. the precise macronutrient composition of dietary protein) may impact the effectiveness of weight loss diets. ABSTRACT: Obesity and diabetes are increasing problems around the world, and although even moderate weight loss can improve metabolic health, reduced calorie diets are notoriously difficult to sustain. Branched-chain amino acids (BCAAs; leucine, isoleucine and valine) are elevated in the blood of obese, insulin-resistant humans and rodents. We recently demonstrated that specifically reducing dietary levels of BCAAs has beneficial effects on the metabolic health of young, growing mice, improving glucose tolerance and modestly slowing fat mass gain. In the present study, we examine the hypothesis that reducing dietary BCAAs will promote weight loss, reduce adiposity, and improve blood glucose control in diet-induced obese mice with pre-existing metabolic syndrome. We find that specifically reducing dietary BCAAs rapidly reverses diet-induced obesity and improves glucoregulatory control in diet-induced obese mice. Most dramatically, mice eating an otherwise unhealthy high-calorie, high-sugar Western diet with reduced levels of BCAAs lost weight and fat mass rapidly until regaining a normal weight. Importantly, this normalization of weight was mediated not by caloric restriction or increased activity, but by increased energy expenditure, and was accompanied by a transient induction of the energy balance regulating hormone FGF21 (fibroblast growth factor 21). Consumption of a Western diet reduced in BCAAs was also accompanied by a dramatic improvement in glucose tolerance and insulin resistance. Our results link dietary BCAAs with the regulation of metabolic health and energy balance in obese animals, and suggest that specifically reducing dietary BCAAs may represent a highly translatable option for the treatment of obesity and insulin resistance.


Asunto(s)
Aminoácidos de Cadena Ramificada/administración & dosificación , Aminoácidos de Cadena Ramificada/metabolismo , Diabetes Mellitus Tipo 2/prevención & control , Dieta/efectos adversos , Obesidad/prevención & control , Animales , Glucemia/análisis , Restricción Calórica , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Factores de Crecimiento de Fibroblastos/metabolismo , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Pérdida de Peso
6.
J Endocr Soc ; 8(7): bvae100, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38831864

RESUMEN

Prostaglandin E2 (PGE2) is a key mediator of inflammation and is derived from the omega-6 polyunsaturated fatty acid, arachidonic acid (AA). In the ß-cell, the PGE2 receptor, Prostaglandin EP3 receptor (EP3), is coupled to the unique heterotrimeric G protein alpha subunit, Gɑz to reduce the production of cyclic adenosine monophosphate (cAMP), a key signaling molecule that activates ß-cell function, proliferation, and survival pathways. Nonobese diabetic (NOD) mice are a strong model of type 1 diabetes (T1D), and NOD mice lacking Gɑz are protected from hyperglycemia. Therefore, limiting systemic PGE2 production could potentially improve both the inflammatory and ß-cell dysfunction phenotype of T1D. Here, we sought to evaluate the effect of eicosapentaenoic acid (EPA) feeding, which limits PGE2 production, on the early T1D phenotype of NOD mice in the presence and absence of Gαz. Wild-type and Gαz knockout NOD mice were fed a control or EPA-enriched diet for 12 weeks, beginning at age 4 to 5 weeks. Oral glucose tolerance, splenic T-cell populations, islet cytokine/chemokine gene expression, islet insulitis, measurements of ß-cell mass, and measurements of ß-cell function were quantified. EPA diet feeding and Gɑz loss independently improved different aspects of the early NOD T1D phenotype and coordinated to alter the expression of certain cytokine/chemokine genes and enhance incretin-potentiated insulin secretion. Our results shed critical light on the Gαz-dependent and -independent effects of dietary EPA enrichment and provide a rationale for future research into novel pharmacological and dietary adjuvant therapies for T1D.

7.
Neuropsychopharmacology ; 48(9): 1328-1337, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36810463

RESUMEN

Major depressive disorder (MDD) is a leading cause of disability worldwide. Individuals with MDD exhibit decreased motivation and deficits in reward processing. In a subset of MDD patients, chronic dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis occurs, resulting in increased levels of the 'stress hormone' cortisol during the normal rest period (i.e., evening and night). However, the mechanistic relationship between chronically elevated resting cortisol and behavioral deficits in motivation and reward processing remains unclear. Given that women are diagnosed with MDD at twice the rate of men, it is important to understand whether the mechanisms linking cortisol to the symptoms of MDD differ by sex. In this study, we used subcutaneous implants to chronically elevate free plasma corticosterone (the rodent homolog of cortisol; 'CORT') during the rest period in male and female mice and examined changes in behavior and dopamine system function. We found that chronic CORT treatment impaired motivated reward-seeking in both sexes. In female but not male mice, CORT treatment reduced dopamine content in the dorsomedial striatum (DMS). In male but not female mice, CORT treatment impaired the function of the dopamine transporter (DAT) in DMS. From these studies, we conclude that chronic CORT dysregulation impairs motivation by impairing dopaminergic transmission in the DMS, but via different mechanisms in male and female mice. A better understanding of these sex-specific mechanisms could lead to new directions in MDD diagnosis and treatment.


Asunto(s)
Corticosterona , Trastorno Depresivo Mayor , Masculino , Ratones , Femenino , Animales , Hidrocortisona , Dopamina , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal
8.
Islets ; 15(1): 2223327, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37415404

RESUMEN

Of the ß-cell signaling pathways altered by obesity and insulin resistance, some are adaptive while others contribute to ß-cell failure. Two critical second messengers are Ca2+ and cAMP, which control the timing and amplitude of insulin secretion. Previous work has shown the importance of the cAMP-inhibitory Prostaglandin EP3 receptor (EP3) in mediating the ß-cell dysfunction of type 2 diabetes (T2D). Here, we used three groups of C57BL/6J mice as a model of the progression from metabolic health to T2D: wildtype, normoglycemic LeptinOb (NGOB), and hyperglycemic LeptinOb (HGOB). Robust increases in ß-cell cAMP and insulin secretion were observed in NGOB islets as compared to wildtype controls; an effect lost in HGOB islets, which exhibited reduced ß-cell cAMP and insulin secretion despite increased glucose-dependent Ca2+ influx. An EP3 antagonist had no effect on ß-cell cAMP or Ca2+ oscillations, demonstrating agonist-independent EP3 signaling. Finally, using sulprostone to hyperactivate EP3 signaling, we found EP3-dependent suppression of ß-cell cAMP and Ca2+ duty cycle effectively reduces insulin secretion in HGOB islets, while having no impact insulin secretion on NGOB islets, despite similar and robust effects on cAMP levels and Ca2+ duty cycle. Finally, increased cAMP levels in NGOB islets are consistent with increased recruitment of the small G protein, Rap1GAP, to the plasma membrane, sequestering the EP3 effector, Gɑz, from inhibition of adenylyl cyclase. Taken together, these results suggest that rewiring of EP3 receptor-dependent cAMP signaling contributes to the progressive changes in ß cell function observed in the LeptinOb model of diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Islotes Pancreáticos , Ratones , Animales , Secreción de Insulina , Glucosa/farmacología , Glucosa/metabolismo , Islotes Pancreáticos/metabolismo , Leptina/metabolismo , Leptina/farmacología , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal , Obesidad
9.
Curr Biol ; 32(5): 1175-1188.e5, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35134327

RESUMEN

Compulsive behavior is a defining feature of disorders such as substance use disorders. Current evidence suggests that corticostriatal circuits control the expression of established compulsions, but little is known about the mechanisms regulating the development of compulsions. We hypothesized that dopamine, a critical modulator of striatal synaptic plasticity, could control alterations in corticostriatal circuits leading to the development of compulsions (defined here as continued reward seeking in the face of punishment). We used dual-site fiber photometry to measure dopamine axon activity in the dorsomedial striatum (DMS) and the dorsolateral striatum (DLS) as compulsions emerged. Individual variability in the speed with which compulsions emerged was predicted by DMS dopamine axon activity. Amplifying this dopamine signal accelerated animals' transitions to compulsion, whereas inhibition delayed it. In contrast, amplifying DLS dopamine signaling had no effect on the emergence of compulsions. These results establish DMS dopamine signaling as a key controller of the development of compulsive reward seeking.


Asunto(s)
Cuerpo Estriado , Dopamina , Animales , Conducta Compulsiva , Cuerpo Estriado/fisiología , Dopamina/metabolismo , Neostriado/metabolismo , Recompensa
10.
Sci Rep ; 12(1): 7188, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35504932

RESUMEN

Extracellular matrix (ECM) plays a multitude of roles, including supporting cells through structural and biochemical interactions. ECM is damaged in the process of isolating human islets for clinical transplantation and basic research. A platform in which islets can be cultured in contact with natural pancreatic ECM is desirable to better understand and support islet health, and to recapitulate the native islet environment. Our study demonstrates the derivation of a practical and durable hydrogel from decellularized human pancreas that supports human islet survival and function. Islets embedded in this hydrogel show increased glucose- and KCl-stimulated insulin secretion, and improved mitochondrial function compared to islets cultured without pancreatic matrix. In extended culture, hydrogel co-culture significantly reduced levels of apoptosis compared to suspension culture and preserved controlled glucose-responsive function. Isolated islets displayed altered endocrine and non-endocrine cell arrangement compared to in situ islets; hydrogel preserved an islet architecture more similar to that observed in situ. RNA sequencing confirmed that gene expression differences between islets cultured in suspension and hydrogel largely fell within gene ontology terms related to extracellular signaling and adhesion. Natural pancreatic ECM improves the survival and physiology of isolated human islets.


Asunto(s)
Hidrogeles , Islotes Pancreáticos , Matriz Extracelular/metabolismo , Glucosa/metabolismo , Humanos , Hidrogeles/metabolismo , Islotes Pancreáticos/metabolismo , Páncreas
11.
Sci Rep ; 11(1): 24212, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930955

RESUMEN

Fiber photometry (FP) is an adaptable method for recording in vivo neural activity in freely behaving animals. It has become a popular tool in neuroscience due to its ease of use, low cost, the ability to combine FP with freely moving behavior, among other advantages. However, analysis of FP data can be challenging for new users, especially those with a limited programming background. Here, we present Guided Photometry Analysis in Python (GuPPy), a free and open-source FP analysis tool. GuPPy is designed to operate across computing platforms and can accept data from a variety of FP data acquisition systems. The program presents users with a set of graphic user interfaces (GUIs) to load data and provide input parameters. Graphs are produced that can be easily exported for integration into scientific figures. As an open-source tool, GuPPy can be modified by users with knowledge of Python to fit their specific needs.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/instrumentación , Neuroimagen/métodos , Fotometría/instrumentación , Fotometría/métodos , Programas Informáticos , Algoritmos , Animales , Área Bajo la Curva , Artefactos , Encéfalo/diagnóstico por imagen , Calcio/química , Gráficos por Computador , Dopamina/química , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurociencias , Lenguajes de Programación , Técnicas Estereotáxicas , Interfaz Usuario-Computador
12.
Pharmacol Res Perspect ; 9(2): e00736, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33694300

RESUMEN

Chronic elevations in fatty acid metabolites termed prostaglandins can be found in circulation and in pancreatic islets from mice or humans with diabetes and have been suggested as contributing to the ß-cell dysfunction of the disease. Two-series prostaglandins bind to a family of G-protein-coupled receptors, each with different biochemical and pharmacological properties. Prostaglandin E receptor (EP) subfamily agonists and antagonists have been shown to influence ß-cell insulin secretion, replication, and/or survival. Here, we define EP3 as the sole prostanoid receptor family member expressed in a rat ß-cell-derived line that regulates glucose-stimulated insulin secretion. Several other agonists classically understood as selective for other prostanoid receptor family members also reduce glucose-stimulated insulin secretion, but these effects are only observed at relatively high concentrations, and, using a well-characterized EP3-specific antagonist, are mediated solely by cross-reactivity with rat EP3. Our findings confirm the critical role of EP3 in regulating ß-cell function, but are also of general interest, as many agonists supposedly selective for other prostanoid receptor family members are also full and efficacious agonists of EP3. Therefore, care must be taken when interpreting experimental results from cells or cell lines that also express EP3.


Asunto(s)
Glucosa/metabolismo , Secreción de Insulina/fisiología , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Animales , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos/métodos , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina , Ratas , Subtipo EP3 de Receptores de Prostaglandina E/antagonistas & inhibidores
13.
Metabolites ; 11(1)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467110

RESUMEN

The transition from ß-cell compensation to ß-cell failure is not well understood. Previous works by our group and others have demonstrated a role for Prostaglandin EP3 receptor (EP3), encoded by the Ptger3 gene, in the loss of functional ß-cell mass in Type 2 diabetes (T2D). The primary endogenous EP3 ligand is the arachidonic acid metabolite prostaglandin E2 (PGE2). Expression of the pancreatic islet EP3 and PGE2 synthetic enzymes and/or PGE2 excretion itself have all been shown to be upregulated in primary mouse and human islets isolated from animals or human organ donors with established T2D compared to nondiabetic controls. In this study, we took advantage of a rare and fleeting phenotype in which a subset of Black and Tan BRachyury (BTBR) mice homozygous for the Leptinob/ob mutation-a strong genetic model of T2D-were entirely protected from fasting hyperglycemia even with equal obesity and insulin resistance as their hyperglycemic littermates. Utilizing this model, we found numerous alterations in full-body metabolic parameters in T2D-protected mice (e.g., gut microbiome composition, circulating pancreatic and incretin hormones, and markers of systemic inflammation) that correlate with improvements in EP3-mediated ß-cell dysfunction.

14.
AAPS J ; 19(5): 1276-1283, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28584908

RESUMEN

Cardiovascular disease is a common co-morbidity found with obesity-linked type 2 diabetes. Current pharmaceuticals for these two diseases treat each of them separately. Yet, diabetes and cardiovascular disease share molecular signaling pathways that are increasingly being understood to contribute to disease pathophysiology, particularly in pre-clinical models. This review will focus on one such signaling pathway: that mediated by the G protein-coupled receptor, Prostaglandin E2 Receptor 3 (EP3), and its associated G protein in the insulin-secreting beta-cell and potentially the platelet, Gz. The EP3/Gz signaling axis may hold promise as a dual target for type 2 diabetes and cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Subtipo EP3 de Receptores de Prostaglandina E/antagonistas & inhibidores , Diabetes Mellitus Tipo 2/etiología , Receptor del Péptido 1 Similar al Glucagón/fisiología , Humanos , Inflamación/etiología , Obesidad/etiología , Transducción de Señal/efectos de los fármacos
15.
Endocrinology ; 158(6): 1645-1658, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28419211

RESUMEN

The α-subunit of the heterotrimeric Gz protein, Gαz, promotes ß-cell death and inhibits ß-cell replication when pancreatic islets are challenged by stressors. Thus, we hypothesized that loss of Gαz protein would preserve functional ß-cell mass in the nonobese diabetic (NOD) model, protecting from overt diabetes. We saw that protection from diabetes was robust and durable up to 35 weeks of age in Gαz knockout mice. By 17 weeks of age, Gαz-null NOD mice had significantly higher diabetes-free survival than wild-type littermates. Islets from these mice had reduced markers of proinflammatory immune cell infiltration on both the histological and transcript levels and secreted more insulin in response to glucose. Further analyses of pancreas sections revealed significantly fewer terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive ß-cells in Gαz-null islets despite similar immune infiltration in control mice. Islets from Gαz-null mice also exhibited a higher percentage of Ki-67-positive ß-cells, a measure of proliferation, even in the presence of immune infiltration. Finally, ß-cell-specific Gαz-null mice phenocopy whole-body Gαz-null mice in their protection from developing hyperglycemia after streptozotocin administration, supporting a ß-cell-centric role for Gαz in diabetes pathophysiology. We propose that Gαz plays a key role in ß-cell signaling that becomes dysfunctional in the type 1 diabetes setting, accelerating the death of ß-cells, which promotes further accumulation of immune cells in the pancreatic islets, and inhibiting a restorative proliferative response.


Asunto(s)
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/genética , Subunidades alfa de la Proteína de Unión al GTP/genética , Animales , Apoptosis/genética , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Femenino , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones Transgénicos , Estreptozocina
16.
Diabetes ; 66(6): 1572-1585, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28193789

RESUMEN

Prostaglandin E2 (PGE2) is derived from arachidonic acid, whereas PGE3 is derived from eicosapentaenoic acid (EPA) using the same downstream metabolic enzymes. Little is known about the impact of EPA and PGE3 on ß-cell function, particularly in the diabetic state. In this work, we determined that PGE3 elicits a 10-fold weaker reduction in glucose-stimulated insulin secretion through the EP3 receptor as compared with PGE2 We tested the hypothesis that enriching pancreatic islet cell membranes with EPA, thereby reducing arachidonic acid abundance, would positively impact ß-cell function in the diabetic state. EPA-enriched islets isolated from diabetic BTBR Leptinob/ob mice produced significantly less PGE2 and more PGE3 than controls, correlating with improved glucose-stimulated insulin secretion. NAD(P)H fluorescence lifetime imaging showed that EPA acts downstream and independently of mitochondrial function. EPA treatment also reduced islet interleukin-1ß expression, a proinflammatory cytokine known to stimulate prostaglandin production and EP3 expression. Finally, EPA feeding improved glucose tolerance and ß-cell function in a mouse model of diabetes that incorporates a strong immune phenotype: the NOD mouse. In sum, increasing pancreatic islet EPA abundance improves diabetic ß-cell function through both direct and indirect mechanisms that converge on reduced EP3 signaling.


Asunto(s)
Alprostadil/análogos & derivados , Diabetes Mellitus/metabolismo , Dinoprostona/metabolismo , Ácido Eicosapentaenoico/farmacología , Glucosa/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Insulina/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E/efectos de los fármacos , Alprostadil/metabolismo , Animales , Ácido Araquidónico/metabolismo , Cromatografía de Gases , Perfilación de la Expresión Génica , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/farmacología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Espectrometría de Masas , Ratones , Ratones Endogámicos NOD , Ratones Obesos , Imagen Óptica , Fosfolípidos , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Transducción de Señal
17.
Mol Endocrinol ; 30(5): 543-56, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27049466

RESUMEN

A defining characteristic of type 1 diabetes mellitus (T1DM) pathophysiology is pancreatic ß-cell death and dysfunction, resulting in insufficient insulin secretion to properly control blood glucose levels. Treatments that promote ß-cell replication and survival, thus reversing the loss of ß-cell mass, while also preserving ß-cell function, could lead to a real cure for T1DM. The α-subunit of the heterotrimeric Gz protein, Gαz, is a tonic negative regulator of adenylate cyclase and downstream cAMP production. cAMP is one of a few identified signaling molecules that can simultaneously have a positive impact on pancreatic islet ß-cell proliferation, survival, and function. The purpose of our study was to determine whether mice lacking Gαz might be protected, at least partially, from ß-cell loss and dysfunction after streptozotocin treatment. We also aimed to determine whether Gαz might act in concert with an activator of the cAMP-stimulatory glucagon-like peptide 1 receptor, exendin-4 (Ex4). Without Ex4 treatment, Gαz-null mice still developed hyperglycemia, albeit delayed. The same finding held true for wild-type mice treated with Ex4. With Ex4 treatment, Gαz-null mice were protected from developing severe hyperglycemia. Immunohistological studies performed on pancreas sections and in vitro apoptosis, cytotoxicity, and survival assays demonstrated a clear effect of Gαz signaling on pancreatic ß-cell replication and death; ß-cell function was also improved in Gαz-null islets. These data support our hypothesis that a combination of therapies targeting both stimulatory and inhibitory pathways will be more effective than either alone at protecting, preserving, and possibly regenerating ß-cell mass and function in T1DM.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Adenilil Ciclasas/metabolismo , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/metabolismo , Exenatida , Glucosa/metabolismo , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hipoglucemiantes/farmacología , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Péptidos/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Estreptozocina/farmacología , Ponzoñas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA